In Vivo Imaging of Click-Crosslinked Hydrogel Depots Following Intratympanic Injection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modification of HA with Tetrazine (HA-TET) and Trans-Cyclooctene (HA-TCO)
2.2. Preparation of Cx-HA
2.3. Characterization of HA and Cx-HA
2.4. Loading HA-TET and HA-TCO with the ZW800-1C NIR Fluorophore
2.5. Subcutaneous Injection of the NIR-Fluorescent HA Formulation In Vivo
2.6. Intratympanic Injection of the NIR-Fluorescent HA Formulation In Vivo
2.7. Measurement of the Auditory Brainstem Response (ABR)
2.8. Endoscopic Observation of Fluorescence in the Tympanic Membrane
3. Results
3.1. Preparation and Characterization of Injectable Click-Crosslinking HA Hydrogels
3.2. Confirmation of Cx-HA Depot Formation during Subcutaneous Injection
3.3. Confirmation of Cx-HA depot Formation during Intratympanic Injection
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hammill, T.L.; Campbell, K.C. Protection for medication-induced hearing loss: The state of the science. Int. J. Audiol. 2018, 57, S87–S95. [Google Scholar] [CrossRef] [PubMed]
- Waldron, C.-A.; Thomas-Jones, E.; Cannings-John, R.; Hood, K.; Powell, C.; Roberts, A.; Tomkinson, A.; Fitzsimmons, D.; Gal, M.; Harris, D.; et al. Oral steroids for the resolution of otitis media with effusion (OME) in children (OSTRICH): Study protocol for a randomised controlled trial. Trials 2016, 17, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kil, J.; Lobarinas, E.; Spankovich, C.; Griffiths, S.K.; Antonelli, P.J.; Lynch, E.D.; Le Prell, C.G. Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2017, 390, 969–979. [Google Scholar] [CrossRef]
- Francis, N.A.; Waldron, C.-A.; Cannings-John, R.; Thomas-Jones, E.; Winfield, T.G.; Shepherd, V.; Harris, D.; Hood, K.; Fitzsimmons, D.; Roberts, A.; et al. Oral steroids for hearing loss associated with otitis media with effusion in children aged 2–8 years: The OSTRICH RCT. Health Technol. Assess. 2018, 22, 1–114. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.; Roine, I.; Fernández, J.; Mata, A.G.; Zavala, I.; Ayala, S.G.; Arbo, A.; Bologna, R.; Goyo, J.; López, E.; et al. Hearing Impairment in Childhood Bacterial Meningitis Is Little Relieved by Dexamethasone or Glycerol. Pediatrics 2009, 125, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Min, K.H.; Rhee, C.-K.; Jung, J.Y.; Suh, M.-W. Characteristics of adverse effects when using high dose short term steroid regimen. Korean J. Audiol. 2012, 16, 65–70. [Google Scholar] [CrossRef]
- Suzuki, H.; Koizumi, H.; Ohkubo, J.I.; Hohchi, N.; Ikezaki, S.; Kitamura, T. Hearing outcome does not depend on the interval of intratympanic steroid administration in idiopathic sudden sensorineural hearing loss. Eur. Arch. Otorhinolaryngol. 2016, 273, 3101–3107. [Google Scholar] [CrossRef]
- Halpin, C.; Shi, H.; Reda, M.; Antonelli, P.J.; Babu, S.; Carey, J.P.; Gantz, B.; Goebel, J.A.; Hammerschlag, P.E.; Harris, J.P.; et al. Audiology in the sudden hearing loss clinical trial. Otol. Neurotol. 2012, 33, 907. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, R.; Harrop-Jones, A.; Wang, X.; Dellamary, L.; LeBel, C.; Piu, F. The sustained-exposure dexamethasone formulation oto-104 offers effective protection against cisplatin-induced hearing loss. Audiol. Neurootol. 2016, 21, 22–29. [Google Scholar] [CrossRef]
- Park, M.; Lee, H.S.; Choi, J.-J.; Kim, H.; Lee, J.H.; Oh, S.H.; Suh, M.-W. Diverse patterns of perilymphatic space enhancement in the rat inner ear after intratympanic injection of two different types of gadolinium: A 9.4-tesla magnetic resonance study. Audiol. Neurootol. 2015, 20, 112–116. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.W.; Oh, S.H.; Lee, I.S.; Byun, J.-H.; Lee, J.H. In situ gelling hydrogel with anti-bacterial activity and bone healing property for treatment of osteomyelitis. Tissue Eng. Reg. Med. 2019, 16, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kwon, D.Y.; Kwon, J.S.; Kim, J.H.; Min, B.H.; Kim, M.S. Stimuli-responsive injectable in situ-forming hydrogels for regenerative medicines. Polym. Rev. 2015, 55, 407–452. [Google Scholar] [CrossRef]
- Jooybar, E.; Abdekhodaie, M.J.; Alvi, M.; Mousavi, A.; Karperien, M.; Dijkstra, P.J. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells. Acta Biomater. 2019, 83, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Liu, Y.; Wang, X.; Yan, H.; Wang, L.; Qu, L.; Kong, D.; Qiao, M.; Wang, L. Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109930. [Google Scholar] [CrossRef]
- Park, J.H.; Park, S.H.; Lee, H.Y.; Lee, J.W.; Lee, B.K.; Lee, B.Y.; Kim, J.H.; Kim, M.S. An injectable, electrostatically interacting drug depot for the treatment of rheumatoid arthritis. Biomaterials 2018, 154, 86–98. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Seidi, O.; Ribeiro, N.; Colaço, R.; Serro, A.P. Tribomechanical comparison between PVA hydrogels obtained using different processing conditions and human cartilage. Materials 2019, 12, 3413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.G.; Kang, T.W.; Park, J.Y.; Park, S.H.; Ji, Y.B.; Ju, H.J.; Kwon, D.Y.; Kim, Y.S.; Kim, S.W.; Lee, B.; et al. An injectable cationic hydrogel electrostatically interacted with BMP2 to enhance in vivo osteogenic differentiation of human turbinate mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109853. [Google Scholar] [CrossRef] [PubMed]
- Trombino, S.; Servidio, C.; Curcio, F.; Cassano, R. Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics 2019, 11, 407. [Google Scholar] [CrossRef] [Green Version]
- Gopinathan, J.; Noh, I. Click chemistry-based injectable hydrogels and bioprinting inks for tissue engineering applications. Tissue Eng. Regen. Med. 2018, 15, 531–546. [Google Scholar] [CrossRef]
- Abandansari, H.S.; Ghanian, M.H.; Varzideh, F.; Mahmoudi, E.; Rajabi, S.; Taheri, P.; Nabid, M.R.; Baharvand, H. In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Biomaterials 2018, 170, 12–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runsewe, D.; Betancourt, T.; Irvin, J.A. Biomedical application of electroactive polymers in electrochemical sensors: A review. Materials 2019, 12, 2629. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.Y.; Lee, B.; Kang, T.W.; Noh, J.H.; Kim, M.J.; Ji, Y.B.; Ju, H.J.; Min, B.H.; Kim, M.S. Electrostatically interactive injectable hydrogels for drug delivery. Tissue Eng. Regen. Med. 2018, 15, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Park, S.H.; Kim, M.J.; Ju, H.J.; Yin, X.Y.; Min, B.H.; Kim, M.S. Injectable click-crosslinked hyaluronic acid depot to prolong therapeutic activity in articular joints affected by rheumatoid arthritis. ACS Appl. Mater. Interfaces 2019, 11, 24984–24998. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Seo, J.Y.; Park, J.Y.; Ji, Y.B.; Kim, K.; Choi, H.S.; Choi, S.; Kim, J.H.; Min, B.H.; Kim, M.S. An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Mater. 2019, 11, 30. [Google Scholar] [CrossRef]
- Choi, H.S.; Gibbs, S.L.; Lee, J.H.; Kim, S.H.; Ashitate, Y.; Liu, F.; Hyun, H.; Park, G.; Xie, Y.; Bae, S.; et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 2013, 31, 148–153. [Google Scholar] [CrossRef]
- Wada, H.; Hyun, H.; Bao, K.; Lee, J.H.; El Fakhri, G.; Choi, Y.; Choi, H.S. Multivalent mannose-decorated NIR nanoprobes for targeting pan lymph nodes. Chem. Eng. J. 2018, 340, 51–57. [Google Scholar] [CrossRef]
- Wada, H.; Hyun, H.; Vargas, C.; Genega, E.M.; Gravier, J.; Gioux, S.; Frangioni, J.V.; Choi, H.S. Sentinel lymph node mapping of liver. Ann. Surg. Oncol. 2015, 22, 1147–1155. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Wang, Z.; Bao, K.; Park, G.K.; Kang, H.; Hu, S.; McDonald, E.; Kim, M.S.; Kashiwagi, S.; Choi, H.S. Targeted molecular imaging of TLR4 in hepatocellular carcinoma using zwitterionic near-infrared fluorophores. Quant. Imaging Med. Surg. 2019, 9, 1548–1555. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, H.J.; Park, M.; Park, J.H.; Shin, G.R.; Choi, H.S.; Suh, M.-W.; Kim, M.S. In Vivo Imaging of Click-Crosslinked Hydrogel Depots Following Intratympanic Injection. Materials 2020, 13, 3070. https://doi.org/10.3390/ma13143070
Ju HJ, Park M, Park JH, Shin GR, Choi HS, Suh M-W, Kim MS. In Vivo Imaging of Click-Crosslinked Hydrogel Depots Following Intratympanic Injection. Materials. 2020; 13(14):3070. https://doi.org/10.3390/ma13143070
Chicago/Turabian StyleJu, Hyeon Jin, Mina Park, Ji Hoon Park, Gi Ru Shin, Hak Soo Choi, Myung-Whan Suh, and Moon Suk Kim. 2020. "In Vivo Imaging of Click-Crosslinked Hydrogel Depots Following Intratympanic Injection" Materials 13, no. 14: 3070. https://doi.org/10.3390/ma13143070
APA StyleJu, H. J., Park, M., Park, J. H., Shin, G. R., Choi, H. S., Suh, M. -W., & Kim, M. S. (2020). In Vivo Imaging of Click-Crosslinked Hydrogel Depots Following Intratympanic Injection. Materials, 13(14), 3070. https://doi.org/10.3390/ma13143070