Direct Observations of the Structural Properties of Semiconducting Polymer: Fullerene Blends under Tensile Stretching
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- DiffAbs beamline of SOLEIL synchrotron (Saint-Aubin, France) using a wide-area 2D XPAD detector (560 × 960 pixels of 130 μm) [42]. The measurements are recorded from the XPAD detector at different αf ranges in the out-of-plane direction, as shown in Figure 1 (Positions 1 and 2). The distance sample-detector was 450 mm.
- (ii)
- BL9 beamline of DELTA synchrotron radiation facility at TU Dortmund, Dortmund, Germany, using a 2D image plate (MAR345) with a resolution of 100 µm/pixel [43]. The distance sample-detector was 394 mm.
3. Results and Discussions
3.1. Structural Properties before Stretching
3.2. In Situ Structural Studies Under Stretching
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors 2018, 18, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirringhaus, H.; Brown, P.J.; Friend, R.H.; Nielsen, M.M.; Bechgaard, K.; Langeveld-Voss, B.M.W.; Spiering, A.J.H.; Janssen, R.; Meijer, E.W.; Herwig, P.; et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Natural 1999, 401, 685–688. [Google Scholar] [CrossRef]
- McCulloch, I.; Heeney, M.; Bailey, C.; Genevičius, K.; Macdonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 2006, 5, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Sirringhaus, H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hösel, M.; Dam, H.F. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells. Energy Technol. 2015, 3, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.Y.; Kim, S.; Baik, H.-K.; Jeong, U. Conducting Polymer Dough for Deformable Electronics. Adv. Mater. 2015, 28, 4455–4461. [Google Scholar] [CrossRef]
- Brabec, C.J.; Gowrisanker, S.; Halls, J.J.M.; Laird, D.; Jia, S.; Williams, S.P. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 2010, 22, 3839–3856. [Google Scholar] [CrossRef]
- Søndergaard, R.R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T.T.; Krebs, F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36–49. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, T.F.; Zaretski, A.; Savagatrup, S.; Printz, A.; Wilkes, C.D.; Diaz, M.I.; Sawyer, E.J.; Lipomi, D.J. Wearable organic solar cells with high cyclic bending stability: Materials selection criteria. Sol. Energy Mater. Sol. Cells 2016, 144, 438–444. [Google Scholar] [CrossRef]
- Jinno, H.; Fukuda, K.; Xu, X.; Park, S.; Suzuki, Y.; Koizumi, M.; Yokota, T.; Osaka, I.; Takimiya, K.; Someya, T. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2017, 2, 780–785. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J.-H.; Kang, T.E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B.; Jeong, U.; Kim, T.-S.; et al. Flexible, highly efficient all-polymer solar cells. Nat. Commun. 2015, 6, 8547. [Google Scholar] [CrossRef] [Green Version]
- Etxebarria, I.; Guerrero, A.; Albero, J.; Garcia-Belmonte, G.; Palomares, E.; Pacios, R. Inverted vs standard PTB7:PC70BM organic photovoltaic devices. The benefit of highly selective and extracting contacts in device performance. Org. Electron. 2014, 15, 2756–2762. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Hahm, S.G.; Han, H.; Seo, J.; Kim, C.; Kim, H.; Marder, S.R.; Ree, M.; Kim, Y. All-Polymer Solar Cells with Bulk Heterojunction Films Containing Electron-Accepting Triple Bond-Conjugated Perylene Diimide Polymer. ACS Sustain. Chem. Eng. 2015, 4, 767–774. [Google Scholar] [CrossRef]
- Ma, W.; Yang, G.; Jiang, K.; Carpenter, J.H.; Wu, Y.; Meng, X.; McAfee, T.; Zhao, J.; Zhu, C.; Wang, C.; et al. Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High-Performance PffBT4T-2OD:PC71BM Organic Solar Cells. Adv. Energy Mater. 2015, 5, 1501400. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515. [Google Scholar] [CrossRef]
- Liao, H.-C.; Ho, C.-C.; Chang, C.-Y.; Jao, M.-H.; Darling, S.; Su, W.-F. Additives for morphology control in high-efficiency organic solar cells. Mater. Today 2013, 16, 326–336. [Google Scholar] [CrossRef]
- Pearson, A.J.; Hopkinson, P.E.; Couderc, E.; Domanski, K.; Abdi-Jalebi, M.; Greenham, N.C. Critical light instability in CB/DIO processed PBDTTT-EFT:PC 71 BM organic photovoltaic devices. Org. Electron. 2016, 30, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhao, S.; Xu, Z.; Qiao, B.; Huang, D.; Zhao, L.; Li, Y.; Zhu, Y.; Wang, P. Revealing the Effect of Additives with Different Solubility on the Morphology and the Donor Crystalline Structures of Organic Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 18231–18237. [Google Scholar] [CrossRef]
- Güldal, N.S.; Berlinghof, M.; Kassar, T.; Du, X.; Jiao, X.; Meyer, M.; Ameri, T.; Osvet, A.; Li, N.; Destri, G.L.; et al. Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer: Fullerene bulk-heterojunctions. J. Mater. Chem. A 2016, 4, 16136–16147. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Yeom, H.R.; Kim, J.Y.; Yang, C. High-efficiency polymer solar cells with a cost-effective quinoxaline polymer through nanoscale morphology control induced by practical processing additives. Energy Environ. Sci. 2013, 6, 1909. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; et al. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photon. 2016, 11, 85–90. [Google Scholar] [CrossRef]
- Lee, K.H.; Schwenn, P.; Smith, A.R.; Cavaye, H.; Shaw, P.E.; James, M.; Krueger, K.B.; Gentle, I.R.; Meredith, P.; Burn, P.L. Morphology of All-Solution-Processed “Bilayer” Organic Solar Cells. Adv. Mater. 2010, 23, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gu, K.L.; Gu, X.; Kurosawa, T.; Yan, H.; Guo, Y.; Koleilat, G.I.; Zhao, D.; Toney, M.F.; Bao, Z. All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chem. Mater. 2016, 28, 5037–5042. [Google Scholar] [CrossRef]
- Jo, J.; Kim, S.-S.; Na, S.-I.; Yu, B.-K.; Kim, D.-Y. Time-Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells. Adv. Funct. Mater. 2009, 19, 866–874. [Google Scholar] [CrossRef]
- Min, J.; Kwon, O.K.; Cui, C.; Park, J.-H.; Wu, Y.; Park, S.Y.; Li, Y.; Brabec, C.J. High performance all-small-molecule solar cells: Engineering the nanomorphology via processing additives. J. Mater. Chem. A 2016, 4, 14234–14240. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.H.; Hoppe, H.; Erb, T.; Güneş, S.; Gobsch, G.; Sariciftci, N.S. Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2007, 17, 1071–1078. [Google Scholar] [CrossRef]
- Radchenko, E.S.; Anokhin, D.V.; Gerasimov, K.L.; Rodygin, A.I.; Rychkov, A.A.; Shabratova, E.D.; Grigorian, S.; Ivanov, D.A. Impact of the solubility of organic semiconductors for solution-processable electronics on the structure formation: A real-time study of morphology and electrical properties. Soft Matter 2018, 14, 2560–2566. [Google Scholar] [CrossRef]
- Sanyal, M.; Schmidt-Hansberg, B.; Klein, M.; Colsmann, A.; Munuera, C.; Vorobiev, A.; Lemmer, U.; Schabel, W.; Dosch, H.; Barrena, E. In Situ X-Ray Study of Drying-Temperature Influence on the Structural Evolution of Bulk-Heterojunction Polymer-Fullerene Solar Cells Processed by Doctor-Blading. Adv. Energy Mater. 2011, 1, 363–367. [Google Scholar] [CrossRef]
- Logothetidis, S. In situ characterization of organic electronic materials using X-ray techniques. In Handbook of Flexible Organic Electronics; Woodhead Publishing: Cambridge, UK, 2014; pp. 217–226. [Google Scholar] [CrossRef]
- Güldal, N.S.; Kassar, T.; Berlinghof, M.; Ameri, T.; Osvet, A.; Pacios, R.; Destri, G.L.; Unruh, T.; Brabec, C.J. Real-time evaluation of thin film drying kinetics using an advanced, multi-probe optical setup. J. Mater. Chem. C 2016, 4, 2178–2186. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Reinspach, J.; Worfolk, B.; Diao, Y.; Zhou, Y.; Yan, H.; Gu, K.; Mannsfeld, S.; Toney, M.F.; Bao, Z. Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing. ACS Appl. Mater. Interfaces 2016, 8, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zhu, Y. Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices. Adv. Mater. 2015, 27, 1480–1511. [Google Scholar] [CrossRef]
- O’Connor, B.; Kline, R.J.; Conrad, B.; Richter, L.J.; Gundlach, D.; Toney, M.F.; Delongchamp, D.M. Anisotropic Structure and Charge Transport in Highly Strain-Aligned Regioregular Poly(3-hexylthiophene). Adv. Funct. Mater. 2011, 21, 3697–3705. [Google Scholar] [CrossRef]
- Mun, J.; Wang, G.-J.N.; Oh, J.Y.; Katsumata, T.; Lee, F.L.; Kang, J.; Wu, H.-C.; Lissel, F.; Rondeau-Gagné, S.; Tok, J.B.-H.; et al. Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. Adv. Funct. Mater. 2018, 28, 1804222. [Google Scholar] [CrossRef]
- Lu, C.; Lee, W.-Y.; Gu, X.; Xu, J.; Chou, H.-H.; Yan, H.; Chiu, Y.-C.; He, M.; Matthews, J.R.; Niu, W.; et al. Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoacene-diketopyrrolopyrrole) Polymers. Adv. Electron. Mater. 2016, 3, 1600311. [Google Scholar] [CrossRef]
- Grigorian, S.; Escoubas, S.; Ksenzov, D.; Duche, D.; Aliouat, M.; Simon, J.-J.; Bat-Erdene, B.; Allard, S.; Scherf, U.; Pietsch, U.; et al. A Complex Interrelationship between Temperature-Dependent Polyquaterthiophene (PQT) Structural and Electrical Properties. J. Phys. Chem. C 2017, 121, 23149–23157. [Google Scholar] [CrossRef]
- Scenev, V.; Cosseddu, P.; Bonfiglio, A.; Salzmann, I.; Severin, N.; Oehzelt, M.; Koch, N.; Rabe, J.P. Origin of mechanical strain sensitivity of pentacene thin-film transistors. Org. Electron. 2013, 14, 1323–1329. [Google Scholar] [CrossRef]
- Salari, M.; Joodaki, M.; Mehregan, S. Experimental investigation of tensile mechanical strain influence on the dark current of organic solar cells. Org. Electron. 2018, 54, 192–196. [Google Scholar] [CrossRef]
- Cordill, M.J.; Glushko, O.; Kreith, J.; Marx, V.; Kirchlechner, C. Measuring electro-mechanical properties of thin films on polymer substrates. Microelectron. Eng. 2015, 137, 96–100. [Google Scholar] [CrossRef]
- Aliouat, M.Y.; Escoubas, S.; Benoudia, M.C.; Ksenzov, D.; Duché, D.; Bènevent, E.; Videlot-Ackermann, C.; Ackermann, J.; Thomas, O.; Grigorian, S. In situ measurements of the structure and strain of a π-conjugated semiconducting polymer under mechanical load. J. Appl. Phys. 2020, 127, 045108. [Google Scholar] [CrossRef] [Green Version]
- Gallard, M.; Amara, M.S.; Putero, M.; Burle, N.; Guichet, C.; Escoubas, S.; Richard, M.-I.; Mocuta, C.; Chahine, R.R.; Bernard, M.; et al. New insights into thermomechanical behavior of GeTe thin films during crystallization. Acta Mater. 2020, 191, 60–69. [Google Scholar] [CrossRef]
- Krywka, C.; Sternemann, C.; Paulus, M.; Javid, N.; Winter, R.; Al-Sawalmih, A.; Yi, S.; Raabe, D.; Tolan, M. The small-angle and wide-angle X-ray scattering set-up at beamline BL9 of DELTA. J. Synchrotron Radiat. 2007, 14, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Perea, J.D.; Kassar, T.; Richter, M.; Heumueller, T.; Matt, G.J.; Hou, Y.; Güldal, N.S.; Chen, H.; Chen, S.; et al. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat. Commun. 2017, 8, 14541. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Heumueller, T.; Gruber, W.; Almora, O.; Du, X.; Ying, L.; Chen, J.; Unruh, T.; Cao, Y.; Li, N.; et al. Comprehensive Investigation and Analysis of Bulk-Heterojunction Microstructure of High-Performance PCE11:PCBM Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 18555–18563. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 1918, 1918, 98–100. Available online: http://eudml.org/doc/59018 (accessed on 20 June 2020).
- Treat, N.D.; Chabinyc, M.L. Phase Separation in Bulk Heterojunctions of Semiconducting Polymers andFullerenes for Photovoltaics. Annu. Rev. Phys. Chem. 2014, 65, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Su, Y.-W.; Jiang, J.-M.; Chen, H.-C.; Lin, S.-W.; Su, C.-J.; Jeng, U.-S.; Wei, K.-H. Complementary solvent additives tune the orientation of polymer lamellae, reduce the sizes of aggregated fullerene domains, and enhance the performance of bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 20760–20769. [Google Scholar] [CrossRef]
Polymer | 100 Domain Size (nm) | 010 Domain Size (nm) | ||
---|---|---|---|---|
OOP | IP | OOP | IP | |
Pristine PCE11 | 12.9 | 9.6 | 4.46 | 4.22 |
Blend with DIO | 11.3 | 11 | 6.75 | - |
Blend without DIO | 13.56 | 13.2 | 8.1 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliouat, M.Y.; Ksenzov, D.; Escoubas, S.; Ackermann, J.; Thiaudière, D.; Mocuta, C.; Benoudia, M.C.; Duche, D.; Thomas, O.; Grigorian, S. Direct Observations of the Structural Properties of Semiconducting Polymer: Fullerene Blends under Tensile Stretching. Materials 2020, 13, 3092. https://doi.org/10.3390/ma13143092
Aliouat MY, Ksenzov D, Escoubas S, Ackermann J, Thiaudière D, Mocuta C, Benoudia MC, Duche D, Thomas O, Grigorian S. Direct Observations of the Structural Properties of Semiconducting Polymer: Fullerene Blends under Tensile Stretching. Materials. 2020; 13(14):3092. https://doi.org/10.3390/ma13143092
Chicago/Turabian StyleAliouat, Mouaad Yassine, Dmitriy Ksenzov, Stephanie Escoubas, Jörg Ackermann, Dominique Thiaudière, Cristian Mocuta, Mohamed Cherif Benoudia, David Duche, Olivier Thomas, and Souren Grigorian. 2020. "Direct Observations of the Structural Properties of Semiconducting Polymer: Fullerene Blends under Tensile Stretching" Materials 13, no. 14: 3092. https://doi.org/10.3390/ma13143092
APA StyleAliouat, M. Y., Ksenzov, D., Escoubas, S., Ackermann, J., Thiaudière, D., Mocuta, C., Benoudia, M. C., Duche, D., Thomas, O., & Grigorian, S. (2020). Direct Observations of the Structural Properties of Semiconducting Polymer: Fullerene Blends under Tensile Stretching. Materials, 13(14), 3092. https://doi.org/10.3390/ma13143092