Reactive Materials in the Removal of Phosphorus Compounds from Wastewater—A Review
Abstract
:1. Introduction
2. Natural Materials and Their Modifications
2.1. Materials with a Pronounced Al/Fe Sorption Group
2.2. Materials with a Pronounced Ca/Mg Sorption Group
3. Synthesized and Waste Materials and Their Modifications
4. Man–Made Materials
5. Summary
5.1. The Influence of a Material’s Chemical Composition, pH and Physical Properties on Phosphorus Sorption
5.2. Possible Use of Reactive Materials in Fertiliser Production
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wiąckowski, S. General Ecology, 1st ed.; BRANTA: Bydgoszcz, Poland, 1998; pp. 125–147. [Google Scholar]
- Schlesinger, W.H.; Bernhardt, E. Biogeochemistry: An Analysis of Global Change, 3rd ed.; Academic Press: Waltham, MA, USA, 2013; pp. 360–418. [Google Scholar]
- Cieslik, B.; Konieczka, P. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean Prod. 2017, 142, 1728–1740. [Google Scholar] [CrossRef]
- Sorensen, B.L.; Dall, O.L.; Habib, K. Environmental and resource implications of phosphorus recovery from waste activated sludge. Waste Manag. 2015, 45, 391–399. [Google Scholar] [CrossRef]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.P.; Graedel, T.E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang.-Hum. Policy Dimens. 2016, 36, 139–152. [Google Scholar] [CrossRef]
- Roy, E.D. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 2017, 98, 213–227. [Google Scholar] [CrossRef]
- Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances particularly harmful to the aquatic environment and conditions to be met when introducing sewage into waters or into the ground, as well as when discharging rainwater or snowmelt into waters or into water equipment. Dz. U. (J. Laws.) 2019, 1311. (In Polish)
- Siwek, H.; Bartkowiak, A.; Wlodarczyk, M. Adsorption of Phosphates from Aqueous Solutions on Alginate/Goethite Hydrogel Composite. Water 2019, 11, 633. [Google Scholar] [CrossRef] [Green Version]
- Bartczak, P. Assessment of the Sorption Capacity of Natural Materials in Removing Selected Inorganic and Organic Compounds, Taking into Account Water Applications; Politechnika Poznańska: Poznań, Poland, 2017. [Google Scholar]
- Dabrowski, A. Adsorption—from theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakkravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Wu, D.Y.; Zhang, B.H.; Li, C.J.; Zhang, Z.J.; Kong, H.N. Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. J. Colloid Interface Sci. 2006, 304, 300–306. [Google Scholar] [CrossRef]
- Drizo, A.; Frost, C.A.; Grace, J.; Smith, K.A. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Res. 1999, 33, 3595–3602. [Google Scholar] [CrossRef]
- Altundogan, H.S.; Tumen, F. Removal of phosphates from aqueous solutions by using bauxite. I: Effect of pH on the adsorption of various phosphates. J. Chem. Technol. Biotechnol. 2002, 77, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Altundogan, H.S.; Tumen, F. Removal of phosphates from aqueous solutions by using bauxite II: The activation study. J. Chem. Technol. Biotechnol. 2003, 78, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.H.; Peng, J. Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Res. 2008, 42, 4869–4877. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.Z.; Da, C.N.; Zhang, F.J.; Zhang, J.; Han, X.; Ge, Y.J.; Li, G.L. Phosphorus Removal from Eutrophic Waters with a Novel Lanthanum-Modified Diatomite. Asian J. Chem. 2013, 25, 5759–5761. [Google Scholar] [CrossRef]
- Wang, Y.; He, H.; Zhang, N.; Shimizu, K.; Lei, Z.F.; Zhang, Z.Y. Efficient capture of phosphate from aqueous solution using acid activated akadama clay and mechanisms analysis. Water Sci. Technol. 2018, 78, 1603–1614. [Google Scholar] [CrossRef]
- Glocheux, Y.; Pasarin, M.M.; Albadarin, A.B.; Mangwandi, C.; Chazarenc, F.; Walker, G.M. Phosphorus adsorption onto an industrial acidified laterite by-product: Equilibrium and thermodynamic investigation. Asia-Pac. J. Chem. Eng. 2014, 9, 929–940. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.A.; Hong, S.; He, J.; Gan, F.X.; Ho, Y.S. Adsorption characteristic studies of phosphorus onto laterite. Desalin. Water Treat. 2011, 25, 98–105. [Google Scholar] [CrossRef]
- Wood, R.B.; McAtamney, C.F. Constructed wetlands for waste water treatment: The use of laterite in the bed medium in phosphorus and heavy metal removal. Hydrobiologia 1996, 340, 323–331. [Google Scholar] [CrossRef]
- Cyrus, J.S.; Reddy, G.B. Sorption and Desorption of Nitrogen and Phosphorus by Zeolite and Shale. In Proceedings of the 2007 National Conference on Environmental Science and Technology; Nzewi, E., Reddy, G., Luster-Teasley, S., Kabadi, V., Chang, S.-Y., Uzochukwu, G., Eds.; Springer Science+Buisness Media, LLC: New York, NY, USA, 2009; pp. 353–364. [Google Scholar] [CrossRef]
- Cyrus, J.S.; Reddy, G.B. Sorption and desorption of phosphorus by shale: Batch and column studies. Water Sci. Technol. 2010, 61, 599–606. [Google Scholar] [CrossRef]
- Kpannieu, D.E.; Ruby, C.; Coulibaly, L.; Abdelmoula, M.; Mallet, M. Removal of phosphate by ivory coast shale in a homogeneous reactor and under hydrodynamic conditions: Influence of soluble species. Clays Clay Miner. 2018, 66, 500–514. [Google Scholar] [CrossRef]
- Sakadevan, K.; Bavor, H.J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Res. 1998, 32, 393–399. [Google Scholar] [CrossRef]
- Srinivasan, R.; Hoffman, D.; Wolfe, J. ENVR 39-Evaluating above-ground permeable reactive barrier materials: Sorption efficiencies for orthophosphate-P and ammonia-N onto zeolite and limestone. Abstr. Pap. Am. Chem. Soc. 2008, 235, 1. [Google Scholar] [CrossRef]
- Kuroki, V.; Bosco, G.E.; Fadini, P.S.; Mozeto, A.A.; Cestari, A.R.; Carvalho, W.A. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media. J. Hazard. Mater. 2014, 274, 124–131. [Google Scholar] [CrossRef]
- Yan, L.G.; Xu, Y.Y.; Yu, H.Q.; Xin, X.D.; Wei, Q.; Du, B. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. J. Hazard. Mater. 2010, 179, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, E.K.; Warmadewanthi, X.; Liu, J.C. Removal of phosphate and fluoride from optoelectronic wastewater by calcite. Int. J. Environ. Technol. Manag. 2010, 12, 3–4. [Google Scholar] [CrossRef]
- Karageorgiou, K.; Paschalis, M.; Anastassakis, G.N. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J. Hazard. Mater. 2007, 139, 447–452. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, X.; Dong, Y.H.; Ma, Y.J. Removal of high-concentration phosphate by calcite: Effect of sulfate and pH. Desalination 2012, 289, 66–71. [Google Scholar] [CrossRef]
- Karaca, S.; Gurses, A.; Ejder, M.; Acikyildiz, M. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 2004, 277, 257–263. [Google Scholar] [CrossRef]
- Ayoub, G.M.; Kalinian, H. Removal of low-concentration phosphorus using a fluidized raw dolomite bed. Water Environ. Res. 2006, 78, 353–361. [Google Scholar] [CrossRef]
- Karaca, S.; Gurses, A.; Ejder, M.; Acikyildiz, M. Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J. Hazard. Mater. 2006, 128, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.B.; Yun, Y.; Zhang, Y.L.; Fan, C.X. Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. J. Hazard. Mater. 2011, 198, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Haddad, K.; Jellali, S.; Jaouadi, S.; Benltifa, M.; Mlayah, A.; Hamzaoui, A.H. Raw and treated marble wastes reuse as low cost materials for phosphorus removal from aqueous solutions: Efficiencies and mechanisms. C. R. Chim. 2015, 18, 75–87. [Google Scholar] [CrossRef]
- Jaouadi, S.; Wahab, M.A.; Anane, M.; Bousselmi, L.; Jellali, S. Powdered marble wastes reuse as a low-cost material for phosphorus removal from aqueous solutions under dynamic conditions. Desalin. Water Treat. 2014, 52, 1705–1715. [Google Scholar] [CrossRef]
- Wu, J.; Tang, X.; Yang, G.; Sun, B.Y.; Yang, Q. Removing phosphorus from phosphorus-containing industrial wastewater using modified marble powder as chemical precipitant. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010. [Google Scholar]
- Eljamal, O.; Okawauchi, J.; Hiramatsu, K.; Harada, M. Phosphorus sorption from aqueous solution using natural materials. Environ. Earth Sci. 2013, 68, 859–863. [Google Scholar] [CrossRef]
- Brogowski, Z.; Renman, G. Characterization of opoka as a basis for its use in wastewater treatment. Pol. J. Environ. Stud. 2004, 13, 15–20. [Google Scholar] [CrossRef]
- Bus, A.; Karczmarczyk, A. Properties of lime-siliceous rock opoka as reactive material to remove phosphorous from water and wastewater. Infrastrukt. Ekol. Teren. Wiej. 2014, 227–238. [Google Scholar] [CrossRef]
- Cucarella, V.; Zaleski, T.; Mazurek, R. Phosphorus sorption capacity of different types of opoka. Ann. Wars. Univ. Life Sci.—SGGW Land Reclam. 2007, 1, 11–18. [Google Scholar] [CrossRef]
- Johansson, L. Industrial by-products and natural substrata as phosphorus sorbents. Environ. Technol. 1999, 20, 309–316. [Google Scholar] [CrossRef]
- Jóźwiakowski, K. Experiment of increasing effectiveness of phosphorus removal in a model of wastewater treatment plant. Inżynieria Rol. 2006, 5, 249–256. [Google Scholar]
- Nilson, C. Phosphorus Removal in Reactive Filter Materials–Factors Affecting the Sorption Capacity TRITA LWR LIC 2066; Royal Institute of Technology: Stockholm, Sweden, 2012. [Google Scholar]
- Johansson, L.; Hylander, L. Phosphorus removal from wastewater by filter media: Retention and estimated plant availability of sorbed phosphorus. J. Pol. Acad. Sci. 1998, 48, 397–409. [Google Scholar]
- Vohla, C.; Koiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, U. Filter materials for phosphorus removal from wastewater in treatment wetlands-A review. Ecol. Eng. 2011, 37, 70–89. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of Phosphorus in Constructed Wetlands with Horizontal Sub-Surface Flow in the Czech Republic. Water Air Soil Pollut. Focus 2002, 4. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Renman, G. Phosphorus Accumulation Pattern in a Subsurface Constructed Wetland Treating Residential Wastewater. Water 2011, 3, 146–156. [Google Scholar] [CrossRef]
- Arias, C.A.; Del Bubba, M.; Brix, H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 2001, 35, 1159–1168. [Google Scholar] [CrossRef]
- Veith, J.A.; Sposito, G. Use of langmuir equation in interpretation of adsorption phenomena. Soil Sci. Soc. Am. J. 1977, 41, 697–702. [Google Scholar] [CrossRef]
- Vohla, C.; Poldvere, E.; Noorvee, A.; Kuusemets, V.; Mander, U. Alternative filter media for phosphorous removal in a horizontal subsurface flow constructed wetland. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2005, 40, 1251–1264. [Google Scholar] [CrossRef]
- Bellier, N.; Chazarenc, F.; Comeau, Y. Phosphorus removal from wastewater by mineral apatite. Water Res. 2006, 40, 2965–2971. [Google Scholar] [CrossRef]
- Postila, H.; Karjalainen, S.M.; Klove, B. Can limestone, steel slag or man-made sorption materials be used to enhance phosphate-phosphorus retention in treatment wetland for peat extraction runoff with low phosphorous concentration? Ecol. Eng. 2017, 98, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Li, L.Y.; Zhang, H.; Wang, D.Q. Influencing Factors of Limestone Sorption and its Usage in Advanced Wastewater Treatment for Phosphorus Removal. In Proceedings of the 4th International Conference on Environmental Technology and Knowledge Transfer, Hefei, China, 24–25 May 2012. [Google Scholar]
- Hedstrom, A. Wollastonite as reactive filter medium for sorption of wastewater ammonium and phosphorus. Environ. Technol. 2006, 27, 801–809. [Google Scholar] [CrossRef]
- Gustafsson, J.P.; Renman, A.; Renman, G.; Poll, K. Phosphate removal by mineral-based sorbents used in filters for small-scale wastewater treatment. Water Res. 2008, 42, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, R.A.; Bavor, H.J. Phosphorus removal in constructed wetlands using gravel and industrial-waste substrata. Water Sci. Technol. 1993, 27, 107–113. [Google Scholar] [CrossRef]
- Zapater-Pereyra, M.; Malloci, E.; van Bruggen, M.A.; Lens, P.N.L. Use of marine and engineered materials for the removal of phosphorus from secondary effluent. Ecol. Eng. 2014, 73, 635–642. [Google Scholar] [CrossRef]
- Abeynaike, A.; Wang, L.Y.; Jones, M.I.; Patterson, D.A. Pyrolysed powdered mussel shells for eutrophication control: Effect of particle size and powder concentration on the mechanism and extent of phosphate removal. Asia-Pac. J. Chem. Eng. 2011, 6, 231–243. [Google Scholar] [CrossRef]
- Vianna, M.T.G.; Marques, M.; Bertolino, L.C. Sun coral powder as adsorbent: Evaluation of phosphorus removal in synthetic and real wastewater. Ecol. Eng. 2016, 97, 13–22. [Google Scholar] [CrossRef]
- Sovik, A.K.; Klove, B. Phosphorus retention processes in shell sand filter systems treating municipal wastewater. Ecol. Eng. 2005, 25, 168–182. [Google Scholar] [CrossRef]
- Adam, K.; Krogstad, T.; Vrale, L.; Sovik, A.K.; Jenssen, P.D. Phosphorus retention in the filter materials shellsand and Filtralite P (R)—Batch and column experiment with synthetic P solution and secondary wastewater. Ecol. Eng. 2007, 29, 200–208. [Google Scholar] [CrossRef]
- Roseth, R. Shell sand: A new filter medium for constructed wetlands and wastewater treatment. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2000, 35, 1335. [Google Scholar] [CrossRef]
- Xiong, J.B.; Qin, Y.; Islam, E.; Yue, M.; Wang, W.F. Phosphate removal from solution using powdered freshwater mussel shells. Desalination 2011, 276, 317–321. [Google Scholar] [CrossRef]
- Nesme, T.; Withers, P.J.A. Sustainable strategies towards a phosphorus circular economy. Nutr. Cycl. Agroecosyst. 2016, 104, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.F.; Xu, J.M.; Wu, J.J.; Muhammad, A. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere 2006, 63, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Dunets, C.S.; Zheng, Y.B.; Dixon, M. Use of phosphorus-sorbing materials to remove phosphate from greenhouse wastewater. Environ. Technol. 2015, 36, 1759–1770. [Google Scholar] [CrossRef] [PubMed]
- Li, J.G.; Wu, B.R.; Zhou, T.; Chai, X.L. Preferential removal of phosphorus using modified steel slag and cement combination for its implications in engineering applications. Environ. Technol. Innov. 2018, 10, 264–274. [Google Scholar] [CrossRef]
- Oguz, E. Removal of phosphate from aqueous solution with blast furnace slag. J. Hazard. Mater. 2004, 114, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, Y.; Yamashita, H. Phosphate Removal from Aqueous Solutions Using Calcium Silicate Hydrate Prepared from Blast Furnace Slag. ISIJ Int. 2017, 57, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Yasipourtehrani, S.; Strezov, V.; Evans, T. Investigation of Phosphate Removal Capability of Blast Furnace Slag in Wastewater Treatment. Sci. Rep. 2019, 9, 9. [Google Scholar] [CrossRef]
- Qiu, B.B.; Duan, F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 571, 86–93. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, Y.; Yang, H.; Wang, S.; Wang, X.; Zhang, S.; Chen, H. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Chemosphere 2020, 247. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Huang, H.M.; Lv, X.M.; Zhao, N.; Guo, G.J.; Zhang, D.D. Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Sci. Total Environ. 2019, 687, 460–469. [Google Scholar] [CrossRef]
- Lama, N.H.; Ma, H.T.; Bashir, M.J.K.; Eppe, G.; Avti, P.; Nguyen, T.T. Removal of phosphate from wastewater using coal slag. Int. J. Environ. Anal. Chem. 2020, 1, 10–11. [Google Scholar] [CrossRef]
- Oguz, E. Sorption of phosphate from solid/liquid interface by fly ash. Colloid Surf. A-Physicochem. Eng. Asp. 2005, 262, 113–117. [Google Scholar] [CrossRef]
- Berg, U.; Donnert, D.; Weidler, P.G.; Kaschka, E.; Knoll, G.; Nueesch, R. Phosphorus removal and recovery from wastewater by tobermorite-seeded crystallisation of calcium phosphate. Water Sci. Technol. 2006, 53, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renman, G.; Renman, A. Sustainable use of crushed autoclaved aerated concrete (CAAC) as a filter medium in wastewater purification. In Proceedings of the 8th International conference on sustainable management of waste and recycled materials in construction, Gothenburg, Sweden, 30 May–1 June 2012. [Google Scholar]
- Jia, C.R.; Dai, Y.R.; Wu, C.Y.; Wu, Z.B.; Liang, W. Adsorption characteristics of used cement for phosphorus removal from wastewater. Fresenius Environ. Bull. 2013, 22, 2910–2915. [Google Scholar]
- Malavipathirana, S.; Wimalasiri, S.; Priyanth, N.; Wickramasooriya, S.; Welagedara, A.; Renman, G. Value Addition to Waste Material Supported by Removal of Available Phosphate from Simulated Brackish Water—A LowCost Approach. J. Geosci. Environ. Prot. 2013, 1, 7–12. [Google Scholar] [CrossRef]
- Buriánek, P.; Skalický, M.; Grünwald, A. Study of Phosphates Adsorption from Water by Recycled Concrete. J. Selcuk Univ. Nat. Appl. Sci. 2014, 17, 103–112. [Google Scholar]
- Bus, A. The assessment of application autoclaved aerated concreate as a reactive materials for phosphorus removal from aquatic solutions. Infrastrukt. Ekol. Teren. Wiej. 2016, 3, 949–958. [Google Scholar] [CrossRef]
- Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, A.; Jamoussi, F.; Montiel, A. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. J. Hazard. Mater. 2008, 151, 103–110. [Google Scholar] [CrossRef]
- Chen, J.; Yan, L.G.; Yu, H.Q.; Li, S.; Qin, L.L.; Liu, G.Q.; Li, Y.F.; Du, B. Efficient removal of phosphate by facile prepared magnetic diatomite and illite clay from aqueous solution. Chem. Eng. J. 2016, 287, 162–172. [Google Scholar] [CrossRef]
- Ma, L.Y.; Zhu, J.X.; Xi, Y.F.; Zhu, R.L.; He, H.P.; Liang, X.L.; Ayoko, G.A. Adsorption of phenol, phosphate and Cd(II) by inorganic-organic montmorillonites: A comparative study of single and multiple solute. Colloid Surf. A-Physicochem. Eng. Asp. 2016, 497, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Nowack, B.; Stone, A.T. Competitive adsorption of phosphate and phosphonates onto goethite. Water Res. 2006, 40, 2201–2209. [Google Scholar] [CrossRef]
- Maamoun, I.; Eljamal, O.; Khalil, A.M.E.; Sugihara, Y.; Matsunaga, N. Phosphate Removal Through Nano-Zero-Valent Iron Permeable Reactive Barrier; Column Experiment and Reactive Solute Transport Modeling. Transp. Porous Media 2018, 125, 395–412. [Google Scholar] [CrossRef]
- Eljamal, O.; Thompson, I.P.; Maamoun, I.; Shubair, T.; Eljamal, K.; Lueangwattanapong, K.; Sugihara, Y. Investigating the design parameters for a permeable reactive barrier consisting of nanoscale zero-valent iron and bimetallic iron/copper for phosphate removal. J. Mol. Liq. 2020, 299, 11. [Google Scholar] [CrossRef]
- Masłoń, A. Phosphorus removal from aqueous solutions using cement milk. Gaz Woda Tech. Sanit. 2016, 12, 457–461. [Google Scholar] [CrossRef]
- Agyeia, M.; Strydomb, C.A.; Potgieterc, J.H. The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends. Cem. Concr. Res. 2002, 32. [Google Scholar] [CrossRef] [Green Version]
- Masłoń, M.; Czarnota, J. Efficiency of Brick Dust and Powdered Ceramsite in the Phosphorus Removal from Wastewater. J. Ecol. Eng. 2020, 21. [Google Scholar] [CrossRef]
- Penn, C.J.; Bryant, R.B.; Callahan, M.P.; McGrath, J.M. Use of Industrial By-products to Sorb and Retain Phosphorus. Commun. Soil Sci. Plant Anal. 2011, 42, 633–644. [Google Scholar] [CrossRef]
- Li, Y.Z.; Liu, C.J.; Luan, Z.K.; Peng, X.J.; Zhu, C.L.; Chen, Z.Y.; Zhang, Z.G.; Fan, J.H.; Jia, Z.P. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J. Hazard. Mater. 2006, 137, 374–383. [Google Scholar] [CrossRef]
- Sima, T.V.; Letshwenyo, M.W.; Lebogang, L. Efficiency of waste clinker ash and iron oxide tailings for phosphorus removal from tertiary wastewater: Batch studies. Environ. Technol. Innov. 2018, 11, 49–63. [Google Scholar] [CrossRef]
- Szymczyk, P.; Filipkowska, U.; Jóźwiak, T. The use of aminated husks Arachis hypogaea for removal of orthophosphate from aqueous solutions. Inżynieria Ekol. 2017, 18, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Szymczyk, P.; Filipkowska, U.; Jóźwiak, T.; Kuczajowska-Zadrożna, M. Phosphate removal from aqueous solutions by chitin and chitosan in flakes. Prog. Chem. Appl. Chitin Deriv. 2016, 21, 192–202. [Google Scholar] [CrossRef]
- Kaczmarczyk, A.; Woja, K.; Bliska, P.; Baryła, A.; Bus, A. The efficiency of filtration materials (Polonite® and Leca®) supporting phosphorus removal in on site treatment systems with wastewater infiltration. Infrastruct. Ecol. Rural Areas 2017, 4, 1401–1413. [Google Scholar] [CrossRef]
- Renman, A.; Renman, G. Long-term phosphate removal by the calcium-silicate material Polonite in wastewater filtration systems. Chemosphere 2010, 79, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Masłoń, A.; Tomaszek, J.A.; Opaliński, I.; Piech, A. Physicochemical properties of keramsite powder form in terms of the improvement of phosphorus removal from wastewater. Inż. Ap. Chem. 2015, 54, 106–108. [Google Scholar]
- Czarnota, J.; Maslon, A. Biogranulation and Physical Properties of Aerobic Granules in Reactors at Low Organic Loading Rate and with Powdered Ceramsite Added. J. Ecol. Eng. 2019, 20, 202–210. [Google Scholar] [CrossRef]
- Czarnota, J.; Maslon, A.; Zdeb, M. Powdered keramsite as unconventional method of AGS technology support in GSBR reactor with minimum-optimum OLR. In Proceedings of the 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering Eko-Dok, Polanica-Zdrój, Poland, 16–18 April 2018. [Google Scholar]
- Maslon, A.; Tomaszek, J.A.; Zamorska, J.; Zdeb, M.; Piech, A.; Opalinski, I.; Jurczyk, L. The impact of powdered keramsite on activated sludge and wastewater treatment in a sequencing batch reactor. J. Environ. Manag. 2019, 237, 305–312. [Google Scholar] [CrossRef]
- Zhu, T.; Jenssen, P.D.; Maehlum, T.; Krogstad, T. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)—Potential filter media in treatment wetlands. Water Sci. Technol. 1997, 35, 103–108. [Google Scholar] [CrossRef]
- Jenssen, P.D.; Krogstad, T. Design of Constructed Wetlands Using Phosphorus Sorbing Lightweight Aggregate (LWA); Wit Press: Southampton, UK, 2003; pp. 259–271. [Google Scholar]
- Kasprzyk, M.; Gajewska, M. Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. Sci. Total Environ. 2019, 650, 249–256. [Google Scholar] [CrossRef]
- Bus, A.; Kaczmarczyk, A.; Baryła, A. Choosing of reactive material for phosphorous removal from water and wastewater on the example of lightweight aggregate Pollytag®. Inżynieria Ekol. 2014, 39, 33–41. [Google Scholar] [CrossRef]
- Jourak, A.; Frishfelds, V.; Lundstrom, T.S.; Herrmann, I.; Hedstrom, A. Modeling of Phosphate Removal by Filtra P in Fixed-bed Columns; International Association of Computer Science, Information Technology Press-Iacsit Press: Singapore, 2011; pp. 241–248. [Google Scholar]
- Herrmann, I.; Jourak, A.; Lundstrom, T.S.; Hedstrom, A.; Viklander, M. Phosphorus binding to Filtra P in batch tests. Environ. Technol. 2012, 33, 1013–1019. [Google Scholar] [CrossRef]
- Wendling, L.A.; Blomberg, P.; Sarlin, T.; Priha, O.; Arnold, M. Phosphorus sorption and recovery using mineral-based materials: Sorption mechanisms and potential phytoavailability. Appl. Geochem. 2013, 37, 157–169. [Google Scholar] [CrossRef]
Type of Phosphate | Bauxite (*) Mixed with Distilled Water and Dried [15] (**) | Raw Bauxite (*) [16] (**) | Activated Bauxite at 600 °C [16] (**) | |||||
---|---|---|---|---|---|---|---|---|
pH [–] | Phosphorus Removal Efficiency [%] | pH [–] | Phosphorus Removal Efficiency [%] | Sorption Capacity [g P/kg] | pH [–] | Phosphorus Removal Efficiency [%] | Sorption Capacity [g P/kg] | |
Orthophosphate | 4.4 | 67.30 | 4.50 | 67.3 | 0.67 | 4.5 | 97.9 | 0.98 |
Glycerophosphate | 5.4 | 57.71 | 3.20 | 39.9 | 0.40 | 3.2 | 90.9 | 0.91 |
Tripolyphosphate | 3.2 | 39.98 | 5.40 | 57.7 | 0.58 | 5.4 | 97.5 | 0.97 |
Diatomite [17] (*) | FerrihydriteModified Diatomite [17] (**) | LanthanumModified Diatomite [18] (***) | ||
---|---|---|---|---|
pH [–] | Sorption Capacity According to the Langmuir Model [g P/kg] | pH [–] | Sorption Capacity According to the Langmuir Model [g P/kg] | Phosphorus Removal Efficiency [%] |
4.0 | 10.20 | 4.0 | 37.30 | 98.2 |
8.5 | 1.70 | 8.5 | 13.60 |
References | Material | Specific Surface Area [m2/g] | Sorption Capacity According to the Kinetic Model [g P/kg] | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] | |
---|---|---|---|---|---|
[19] | akadama clay | activated H2SO4 | 75.27 | 3.95 | 9.19 |
natural | 117.67 | 3.41 | 5.88 |
Laterite [22] (*) | Acidified Laterite, ByProduct of the Production of Ferric Aluminium Sulphate [20] (**) | Laterite [21] (***) | |||
---|---|---|---|---|---|
Initial Phosphorus Concentration [mg P/L] | Phosphorus Removal Efficiency [%] | Initial Phosphorus Concentration [mg P/L] | Sorption Capacity [g P/kg] | Temperature [°C] | Sorption Capacity [g P/kg] |
50 | 60.0 | 0.035 | 1.65 | 24.85 | 1.07 (L) |
5–10 | 80.0–90.0 | 5–50 | 2.73 (L) | 34.85 | 1.14 (L) |
References | Material | Porosity [%] | Type of Experiment | Hydraulic Conductivity [m/s] | Fraction [mm] | Initial Phosphorus Concentration [mg P/L] | Sorption Capacity [g P/kg] |
---|---|---|---|---|---|---|---|
[14] | Shale | 38 | column | 0.001 | 6.8–12.6 (**) | 45 | 0.40 |
0.001 | 6.8–12.6 (**) | 100 | 0.75 | ||||
static (*) | 0.001 | 6.8–12.6 (**) | 2.5–40 | 0.65 (L) | |||
[23,24] | Shale | 70 | static (***) | 0.0009 | 2.0 | 0–1000 | 0.17 ± 0.01 |
0.0076 | 2.0–4.7 | 0–1000 | 0.14 ± 0.01 | ||||
static (****) | 0.0009 | 2.0 | 0–100 | 0.50 ± 0.04 | |||
0.0076 | 2.0–4.7 | 0–100 | 0.25 ± 0.04 | ||||
[25] | Shale | 50 | static (*****) | 0.032 | < 0.4 | 5–250 | 0.51 (L) |
5 | 0.06 | ||||||
25 | 0.023 | ||||||
column | 0.032 | 1.0–2.0 | 25 | 0.17 |
References | Description of the Study | Material | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] |
---|---|---|---|
[14] | solutions with initial concentrations of 2.5–40 mg P/L+ 20 g material (fraction: 6.8–12.6 mm), shaken at 60 rpm for 24 h | zeolite | 0.46 |
[27] | solutions with initial concentrations of 500–10,000 mg P/l + 3 g material, shaken for 48 h at 100 rpm, centrifuged at 5000 rpm for 10 min | zeolite | 2.15 |
[13] | solutions with initial concentrations of 0.5–1000 mg P/L + 0.4 g material, shaken for 24 h | zeolite synthesized from fly ash ZFA (*) | 35.31 |
zeolite (**) | 2.19 | ||
0.4 g material + solution with an initial concentration of 1000 mg P/L, shaken for 24 h | ZFA–Ca | 54.17 | |
ZFA–Fe | 31.75 | ||
ZFA–Al | 30.46 | ||
ZFA–Mg | 32.79 |
References | Material | Specific Surface Area [m2/g] | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] |
---|---|---|---|
[29] | hydroxyAl–modified bentonite | 200.00 | 12.70 |
hydroxyFe–modified bentonite | 143.00 | 11.20 | |
hydroxyAl-Fe–modified bentonite | 94.90 | 10.50 | |
[28] | lanthanum(III)–modified bentonite | 115.00 | 14.00 |
References | Description of the Study | Type of Medium | Initial Phosphorus Concentration [mg P/L] | Sorption Capacity [g P/kg] |
---|---|---|---|---|
[34] | column: material < 0.074 mm, flow rate 1 mL/min | distilled water | 0.28 | 0.06 |
ground water | 0.34 | 0.07 | ||
tap water | 0.34 | 0.05 | ||
static: solution + 5–40 g material, shaken at 200 rpm | synthetic solution | 9.60 | 0.93 | |
[33] | static: 0.2 g material + 100 mL solution, shaken at 90 rpm, centrifuged at 3750 rpm | synthetic solution | 10.00–60.00 | 9.74–52.91 (*) |
10.00–60.00 | 7.34–51.02 (**) |
References | Material | Initial Phosphorus Concentration [mg P/L] | Diameter d50 [µm] | Composition CaO [%] MgO [%] | Final pH [–] | Sorption Capacity [g P/kg] | |
---|---|---|---|---|---|---|---|
[37] | marble (*) | 1000 | 32.1 | 46.10 | 1.24 | 9.45 | 103.20 |
calcined marble (**) | 1000 | 28.9 | 67.45 | 2.35 | 12.27 | 181.20 | |
[38] | marble (***) | 100 | 22.6 | 46.06 | 1.24 | – | 17.00 |
References | Material | pH [–] | The Ratio of Components SiO2/CaO | Fraction [mm] | Sorption Capacity [g P/kg] |
---|---|---|---|---|---|
[%]/[%] | |||||
[47] | Opoka | 8.3 | 34.00/28.00 | 0.25–2.00 | 0.10 |
[41] | Opoka | 6.8 | 44.65/23.75 | 0.25 | 19.60 |
[42] | Calcinated opoka at 900 °C | – | 57.24/23.86 | 0.05–20 | 12.30 |
[41] | Calcinated opoka at 1000 °C | 12.0 | 39.36/42.07 | 0.25 | 119.60 |
[43] | Calcinated opoka at 900 °C | 12.4 | 66.57/30.91 | dust | 79.37 |
[43] | Calcinated opoka at 900 °C | 12.4 | 45.00/58.76 | dust | 181.82 |
References | Diameter Material Grains | Composition CaO [%] MgO [%] Fe2O3 [%] Al2O3 [%] | Sorption Capacity at Initial Concentration 320 mg P/L [g P/kg] | Maximum Sorption Capacity According to the Langmuir Model (*) [g P/kg] | Phosphorus Removal Efficiency in a Column Experiment (**) [g P/kg] | ||||
---|---|---|---|---|---|---|---|---|---|
d60 [mm] | d10 [mm] | ||||||||
[51] | 3.20 | 0.80 | 9.79 | 0.35 | 0.68 | 0.48 | 2.68 | 0.061 | 0.134 |
0.60 | 0.21 | 4.90 | 0.17 | 0.52 | 0.45 | 1.68 | 0.130 | 0.117 | |
3.40 | 0.61 | 8.72 | 0.21 | 0.51 | 0.36 | 3.94 | 0.064 | 0.165 |
References | Description of the Study: | Fraction [mm] | pH [–] | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] |
---|---|---|---|---|
[14] | solutions with initial concentrations of 2.5–40 mg P/L + 20 g material, shaken at 60 rpm for 24 h | 12.7 | 7.8 | 0.68 |
[47] | solutions with initial concentrations of 5–25 mg P/L + 1 g material | 0.3–2.0 | 8.9 | 0.25 |
[54] | solutions with initial concentrations of 5–150 mg P/L + 1 g material, shaken at 160 rpm for 24 h | d60: 7.0 d10: 3.5 | – | 1.09 |
References | Composition CaO [%] MgO [%] Fe2O3 [%] Al2O3 [%] | Initial Phosphorus Concentration [mg P/L] | Sorption Capacity [g P/kg] | Phosphorus Removal Efficiency [%] | |||
---|---|---|---|---|---|---|---|
[57] | 46.00 | 0.47 | 0.07 | – | 0.8–1700 | 0.0001–12.000 (*) | – |
14–61 | – | 90.0–93.0 (*) | |||||
[58] | 21.14 | 2.21 | 3.07 | 10.31 | 5 | – | 51.1 (**) |
References | Composition CaO [%] MgO [%] Fe2O3 [%] Al2O3 [%] | Fraction [mm] | Sorption Capacity [g P/kg] | Phosphorus Removal Efficiency [%] | |||
---|---|---|---|---|---|---|---|
[59] (*) | – | 0.08 | 0.78 | 0.40 | 5.0–10.0 | 0.0258 | – |
– | 0.01 | 0.39 | 4.50 | 3.0–5.0 | 0.0478 | – | |
[53] (**) | 19.60 | 6.80 | 1.12 | 0.66 | 0.9–1.8 | 1.20 | 32.6 |
2.80 | 1.99 | 1.37 | 0.94 | 0.07–1.0 | 1.70 | 50.3 |
References | Material | Composition CaO [%] MgO [%] Fe2O3 [%] Al2O3 [%] | Sorption Capacity [g P/kg] | Phosphorus Removal Efficiency in a Column Experiment [%] | |||
---|---|---|---|---|---|---|---|
[65] | powdered shell sand | 39.00–42.00 | 0.60–3.20 | – | – | 14.00–17.00 (*) | – |
3.00–4.00 (**) | |||||||
[66] | natural powdered shells | 52.60 | 0.20 | 0.15 | 0.14 | 6.95 | 26.0 |
pyrolyzed powdered shells | 55.20 | 0.21 | 0.03 | 0.08 | – | 58.2 | |
[64] | shell sand | – | – | – | – | 9.60 | 97.0 |
Material [References] | pH [–] | Initial Phosphorus Concentration [mg P/L] | Sorption Capacity [g P/kg] | Maximum Sorption Capacity [g P/kg] | Phosphorus Removal Efficiency [%] |
---|---|---|---|---|---|
Furnace slag [68] (*) | 12.3 | 100–1000 | – | 8.89 (L) | – |
Steel slag [70] (**) | – | 1–20 | 1.06–18.88 | 21.70 | 98.2 |
Blast furnace slag [71] (***) | 8.5 | 500 | – | 6.37 (F) | 99.0 |
CSH from blast furnace slag [72] (****) | 12 | 38–47.5 | 53.11 | 75.70 (L) | – |
Furnace slag [69] (*****) | 11 | 60 | 8.80 | – | 99.0 |
11 | 20 | 1.64 | – | 99.0 |
References | Material | Composition | Specific Surface Area [m2/g] | Sorption Capacity According to the Kinetic Model [g P/kg] | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fe2O3 [%] | Al2O3 [%] | SiO2 [%] | CaO [%] | MgO [%] | ||||||
[72] | biochar | raw | – | – | – | – | – | 61.16 | 1.80 | 2.39 |
with fly ash | 8.36 | 33.26 | 41.96 | 4.88 | 0.50 | 80.72 | 2.11 | 3.08 | ||
with coal gangue | 8.23 | 31.66 | 40.80 | 9.66 | 0.66 | 75.86 | 2.17 | 3.20 | ||
[77] | coal slag | 5.14 | 28.70 | 55.90 | 1.04 | 1.96 | 9.20 | 8.85 | 21.63 | |
[75] | biochar containing MgO nanoparticles | – | – | – | – | – | 273.82 | – | 60.95 | |
[76] | dolomite—modified biochar | – | – | – | – | – | 11.31 | 20.48 | 29.18 |
References | Fraction [mm] | Initial Phosphorus Concentration [mg P/L] | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] | Phosphorus Removal Efficiency [%] | Final pH [–] |
---|---|---|---|---|---|
[80] (*) | 2.0–4.0 | 10.0 | 70.90 | 100.0 | 8.5–9.3 |
[82] (**) | 2.0–4.0 | 100.0 | 14.29 | – | – |
[83] (***) | 0.125–0.250 | 0.2–0.3 | 0.28 | 65.2–86.7 | 10.3–11.3 |
[81] (****) | dust | 25.0 | 7.93 | 94.0 | 12.3 |
[84] (*****) | 2.0–5.0 | 4.9–1108.7 | 9.00 | – | – |
Material | Specific Surface Area [m2/g] | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] |
---|---|---|
Magnetic diatomite nanocomposite (MDC) | – | 11.89 |
Illite clay nanocomposite (MIC) | – | 5.48 |
Modified montmorillonite AlPMt | 283.20 | 10.07–13.04 |
Nano-valent iron barriers (nZVI) | 43.09 | 54.34 |
Goethite synthesized | 100.00 | 18.20–27.00 |
References | Description of the Study | Material | Composition | Specific Surface Area [m2/g] | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] | ||||
---|---|---|---|---|---|---|---|---|---|
Fe2O3 [%] | Al2O3 [%] | SiO2 [%] | CaO [%] | MgO [%] | |||||
[93] | 50 mL solutions with initial concentrations of 2–200 mg P/L + material, shaken (24 h) | Powdered ceramsite | 12.91 | 17.56 | 46.28 | 10.62 | 3.58 | 5.18 | 0.59 |
brick dust | 7.29 | 18.83 | 62.33 | 2.14 | 2.24 | 4.86 | 0.46 |
Description of the Study | Material | Composition CaO [%] Fe2O3 [%] Al2O3 [%] | Initial pH [–] | Final pH [–] | Sorption Capacity [g P/kg] | ||
---|---|---|---|---|---|---|---|
solutions with initial concentrations 0–103.23 mg P/L + 2 g material, contact time: 16 h, centrifugation: 2000 rpm for 15 min | ADMR1 | 30.10 | 8.81 | 0.16 | 8.2 | 7.21 | 40.0 |
ADMR2 | 2.26 | 10.28 | 5.55 | 9.1 | 8.30 | 29.0 | |
WTR | 0.52 | 3.16 | 7.64 | 7.5 | 6.57 | 32.0 | |
FGD | 19.84 | 0.13 | 0.05 | 7.9 | 4.46 | 14.0 | |
Red mud | 3.86 | 1.20 | 2.65 | 8.2 | 6.66 | 29.0 | |
Fly ash | 1.27 | 5.56 | 7.78 | 9.8 | 7.90 | 25.0 |
Material | Composition | Specific Surface Area [m2/g] | Phosphorus Removal Efficiency [%] | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] | |||||
---|---|---|---|---|---|---|---|---|---|
Fe2O3 [%] | Al2O3 [%] | SiO2 [%] | CaO [%] | MgO [%] | |||||
Red mud | raw | 12.76 | 6.93 | 19.14 | 46.02 | 1.15 | 14.09 | 47.8 | 113.87 |
activated 0.25HCl | 14.84 | 7.20 | 20.34 | 45.16 | 1.42 | 19.35 | 99.0 | 161.61 | |
calcinated at 700 °C | 13.05 | 8.06 | 22.45 | 45.23 | 1.14 | 9.69 | 99.0 | 345.50 | |
Fly ash | raw | 7.35 | 25.36 | 56.38 | 2.72 | 1.45 | 14.55 | 16.1 | 63.22 |
activated 0.25HCl | 7.02 | 27.10 | 56.75 | 2.13 | 1.85 | 18.70 | 45.2 | 78.44 | |
calcinated at 700 °C | 6.09 | 28.47 | 57.2 | 2.14 | 1.57 | 12.20 | 52.9 | 58.92 |
Material | Composition | Physical Parameters | Maximum Sorption Capacity According to the Langmuir Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fe2O3 [%] | Al2O3 [%] | SiO2 [%] | CaO [%] | MgO [%] | Bulk Density | Particle Density | Porosity | Hydraulic Conductivity | ||
[g/m3 ] | [g/m3] | [%] | [m/s] | [g P/kg] | ||||||
Iron oxide tailings | 25.10 | 5.40 | 18.50 | 4.20 | 3.00 | 1.00 | 2.00 | 48.50 | 0.00011 | 1.29 |
Clinker ash | 5.30 | 11.70 | 18.60 | 6.00 | 0.40 | 1.30 | 2.90 | 56.70 | 2.60 | 0.29 |
Material | Maximum Sorption Capacity According to the Langmuir Model [g P/kg] | Initial pH [–] | Final PH [–] | Optimal pH [–] | Final pH of the Solution at Optimal pH [–] |
---|---|---|---|---|---|
Arachis hypogaea husks, unmodified | 0.01 | 5.00–8.00 | 6.94–7.54 | 8.00 | 7.54 |
Arachis hypogaea husks, modified | 0.10 | 5.00–8.00 | 6.64–7.85 | 5.00 | 6.64 |
Chitin | 2.09 | 5.00–7.00 | 6.74–7.10 | 3.00 | 3.33 |
Chitosan | 6.64 | 4.00–8.00 | 6.75–7.86 | 4.00 | 6.75 |
References | Material | Description of the Study | pH [–] | Porosity [%] | Sorption Capacity [g P/kg] |
---|---|---|---|---|---|
[92] | Polonite® | solutions with initial concentrations of 100–1100 mg P/L + 1 g material, shaken for 24 h | 12.0 | 38.00 | 40.90 (L) |
[92] | Leca® | 7.5 | 48.00 | 5.10 (L) | |
[105] | LWA | solutions with initial concentrations of 0–320 mg P/L + 8 g material, shaken for 24 h | – | – | 3.47 |
[106] | LWA | solutions with initial concentrations of 320–480 mg P/L + 3 g material, shaken for 24 h | – | – | 12.00 |
[107] | Rockfos®(*) | solutions with initial concentrations of 5–100 mg P/L + 10 g material shaken for 1 h | 11.0–12.0 | >50.00 | 256.40 (L) |
[108] | Pollytag®(**) | solutions with initial concentrations of 1.28–949 mg P/L + 1 g material, shaken for 15 min | 7.4 | 62.00 | 32.24 |
[64] | Filtralite® | do solutions with initial concentrations of 0–480 mg P/L + 3 g material, shaken for 24 h | 10.7 | 68.00 | 2.50 (L) |
[110] | Filtra P(***) | do solutions with initial concentrations of 3–1000 mg P/L + 25 g material, shaken for 48 h | – | – | 4.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubernat, S.; Masłoń, A.; Czarnota, J.; Koszelnik, P. Reactive Materials in the Removal of Phosphorus Compounds from Wastewater—A Review. Materials 2020, 13, 3377. https://doi.org/10.3390/ma13153377
Gubernat S, Masłoń A, Czarnota J, Koszelnik P. Reactive Materials in the Removal of Phosphorus Compounds from Wastewater—A Review. Materials. 2020; 13(15):3377. https://doi.org/10.3390/ma13153377
Chicago/Turabian StyleGubernat, Sylwia, Adam Masłoń, Joanna Czarnota, and Piotr Koszelnik. 2020. "Reactive Materials in the Removal of Phosphorus Compounds from Wastewater—A Review" Materials 13, no. 15: 3377. https://doi.org/10.3390/ma13153377
APA StyleGubernat, S., Masłoń, A., Czarnota, J., & Koszelnik, P. (2020). Reactive Materials in the Removal of Phosphorus Compounds from Wastewater—A Review. Materials, 13(15), 3377. https://doi.org/10.3390/ma13153377