Comparative Study on the Influence of Noble Metal Nanoparticles (Ag, Au, Pd) on the Photocatalytic Activity of ZnO NPs Embedded in Renewable Castor Oil Polymer Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Functionalization of ZnO Nanoparticles
2.3. Synthesis of Photopolymerizable Castor Oil Urethane Dimethacrylate with Silane Sequences (CO-UDMA-Si)
2.4. Synthesis of Photopolymerizable Monomer PPO-UDMA
2.5. Preparation of Hybrid Composites
2.6. Characterization
2.7. Photocatalytic Activity Measurements
3. Results and Discussion
3.1. Functionalization and Characterization of ZnO Nanoparticles
3.2. Preparation and Characterization of Hybrid Composites
3.3. Photocatalytic Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, D.W.; Zhu, Q.; Han, C.J.; Yang, Y.N.; Jiang, W.Z.; Zhang, Z.Y. Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads. J. Hazard. Mater. 2015, 285, 398–408. [Google Scholar] [CrossRef]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibanez, P.; Di Somma, I. Solar photocatalysis: Materials, reactors, some commercial and pre-industrialized applications. A comprehensive approach. Appl. Catal. B Environ. 2015, 170–171, 90–123. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, S.; Wen, T.; Gu, P.C.; Li, L.; Zhao, G.X.; Niu, F.L.; Huang, Q.F.; Tang, Z.W.; Wang, X.K. A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal. Today 2019, 335, 20–30. [Google Scholar] [CrossRef]
- Fischer, K.; Schulz, P.; Atanasov, I.; Latif, A.A.; Thomas, I.; Kuhnert, M.; Prager, A.; Griebel, J.; Schulze, A. Synthesis of high crystalline TiO2 nanoparticles on a polymer membrane to degrade pollutants from water. Catalysts 2018, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, N.F.; Najman, A.M.M.; Marfur, A.; Jusoh, N.W.C. Strategies for the formation of oxygen vacancies in zinc oxide nanoparticles used for photocatalytic degradation of phenol under visible light irradiation. J. Photochem. Photobiol. B-Biol. 2020, 388, 112202. [Google Scholar] [CrossRef]
- Srinivasan, V.; Hiragond, C.B.; Khanna, P.K.; More, P.V. Surface engineering of CdS quantum dots for photocatalytic applications under direct sunlight. ChemistrySelect 2018, 3, 8491–8500. [Google Scholar] [CrossRef]
- Han, G.P.; Wang, W.N.; Liu, B.; Pei, C.J.; Zhao, H.; Liu, J.F.; Yang, H.Q. Visible-light photocatalysis in CdTe nanoflakes with exposed {111} facets and charge separation between polar CdTe {111} surfaces. Appl. Catal. B-Environ. 2017, 208, 94–103. [Google Scholar] [CrossRef]
- Cui, Y.Y.; Cheng, Y.; Jiang, Y.R.; Yang, J.; Wang, Y.L. One step approach for hybrid photocatalyst synthesis: Synergetic photocatalytic water pollutant degradation. J. Alloy. Compd. 2020, 817, 152752. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, J.W.; Zhang, Y.K.; Jiang, M.T.; Xu, S.; Liang, Q.; Li, Z.Y. Shape-controlled synthesis of golf-like, star-like, urchin-like and flower-like SrTiO3 for highly efficient photocatalytic degradation and H2 production. J. Alloy. Compd. 2020, 817, 152796. [Google Scholar] [CrossRef]
- Samadi, M.; Zirak, M.; Naseri, A.; Khorashadizade, E.; Moshfegh, A.Z. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 2016, 605, 2–19. [Google Scholar] [CrossRef] [Green Version]
- She, P.; Xu, K.L.; Zeng, S.; He, Q.R.; Sun, H.; Liu, Z.N. Investigating the size effect of Au nanospheres on the photocatalytic activity of Au-modified ZnO nanorods. J. Colloid Interface Sci. 2017, 499, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Podasca, V.E.; Buruiana, T.; Buruiana, E.C. Photocatalytic degradation of Rhodamine B dye by polymeric films containing ZnO, Ag nanoparticles and polypyrrole. J. Photochem. Photobiol. A-Chem. 2019, 371, 188–195. [Google Scholar] [CrossRef]
- Guy, N.; Ozacar, M. The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation. Int. J. Hydrog. Energy 2016, 41, 20100–20112. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Meng, X.; Zeng, N.; Dan, Y.; Jiang, L. Covalent immobilization of TiO2 within macroporous polymer monolith as a facilely recyclable photocatalyst for water decontamination. Colloid Polym. Sci. 2018, 296, 1419–1429. [Google Scholar] [CrossRef]
- Koysuren, O.; Koysuren, H.N. Photocatalytic activity of polyvinyl borate/titanium dioxide composites for UV light degradation of organic pollutants. J. Macromol. Sci. Part A-Pure Appl. Chem. 2018, 55, 401–407. [Google Scholar] [CrossRef]
- Srikanth, B.; Goutham, R.; Badri Narayan, R.; Ramprasath, A.; Gopinath, K.P.; Sankaranarayanan, A.R. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef]
- Colmenares, J.C.; Kuna, E. Photoactive hybrid catalysts based on natural and synthetic polymers: A comparative overview. Molecules 2017, 22, 790. [Google Scholar] [CrossRef] [Green Version]
- Ghanem, A.F.; Badawy, A.A.; Mohram, M.E.; Abdelrehim, M.H. Enhancement the photocatalytic and biological activity of nano-sized ZnO using hyperbranched polyester. J. Inorg. Organomet. Polym. Mater. 2019, 29, 928–938. [Google Scholar] [CrossRef]
- Chibac, A.L.; Buruiana, T.; Melinte, V.; Buruiana, E.C. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3. Beilstein J. Nanotechnol. 2017, 8, 272–286. [Google Scholar] [CrossRef]
- Morselli, D.; Campagnolo, L.; Prato, M.; Papadopoulou, E.L.; Scarpellini, A.; Athanassiou, A.; Fragouli, D. Ceria/gold nanoparticles in situ synthesized on polymeric membranes with enhanced photocatalytic and radical scavenging activity. ACS Appl. Nano Mater. 2018, 1, 5601–5611. [Google Scholar] [CrossRef]
- Melinte, V.; Buruiana, T.; Balan, L.; Buruiana, E.C. Photocrosslinkable acid urethane dimethacrylates from renewable natural oil and their use in the design of silver/gold polymeric nanocomposites. React. Funct. Polym. 2012, 72, 252–259. [Google Scholar] [CrossRef]
- Meiorin, C.; Muraca, D.; Pirota, K.R.; Aranguren, M.I.; Mosiewicki, M.A. Nanocomposites with superparamagnetic behavior based on a vegetable oil and magnetite nanoparticles. Eur. Polym. J. 2014, 53, 90–99. [Google Scholar] [CrossRef]
- Lefatshe, K.; Muiva, C.M.; Kebaabetswe, L.P. Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr. Polym. 2017, 164, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Song, X.M.; Wang, J.H.; Yu, S.T.; Chen, F.S.; Sun, X.Y. Structure, mechanical properties and antimicrobial activity of nano-ZnO/cellulose composite films. Cell Chem. Technol. 2017, 51, 355–361. [Google Scholar]
- Chatani, S.; Kloxin, C.J.; Bowman, C.N. The power of light in polymer science: Photochemical processes to manipulate polymer formation, structure and properties. Polym. Chem. 2014, 5, 2187–2201. [Google Scholar] [CrossRef] [Green Version]
- Balan, L.; Schneider, R.; Lougnot, D.J. A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization. Prog. Org. Coat. 2008, 62, 351–357. [Google Scholar] [CrossRef]
- Yagci, Y.; Sangermano, M.; Rizza, G. In situ synthesis of gold-cross-linked poly(ethylene glycol) nanocomposites by photoinduced electron transfer and free radical polymerization processes. Chem. Commun. 2008, 24, 2771–2773. [Google Scholar] [CrossRef]
- Wolak, S.; Vidal, L.; Becht, J.M.; Michelin, L.; Balan, L. An efficient photochemical route to Pd nanoparticles; application to the one-step synthesis of Pd@polymer nanocomposite films. Nanotechnology 2016, 27, 345601. [Google Scholar] [CrossRef]
- Podasca, V.E.; Buruiana, T.; Buruiana, E.C. UV-cured polymeric films containing ZnO and silver nanoparticles with UV–vis light-assisted photocatalytic activity. Appl. Surf. Sci. 2016, 377, 262–273. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Haldorai, Y.; Pham, Q.L.; Shim, J.J. Supercritical fluid mediated synthesis of poly(2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2011, 176, 773–778. [Google Scholar] [CrossRef]
- Barrak, H.; Saied, T.; Chevallier, P.; Laroche, G.; M’nif, A.; Hamzaoui, A.H. Synthesis, characterization and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediaminetriacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@TMSEDTA. Arab. J. Chem. 2019, 12, 4340–4347. [Google Scholar] [CrossRef] [Green Version]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Development of nanocomposites reinforced with carboxylated poly(ether ether ketone) grafted to zinc oxide with superior antibacterial properties. ACS Appl. Mater. Interfaces 2014, 6, 3729–3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcar, V.; Somoghi, R.; Nitu, S.G.; Nicolae, C.A.; Alexandrescu, E.; Gîfu, I.C.; Gabor, A.R.; Stroescu, H.; Ianchis, R.; Caprarescu, S.; et al. The effect of different coupling agents on nano-ZnO materials obtained via the sol–gel process. Nanomaterials 2017, 7, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, X.M.; Chen, Y.W.; Li, F.; Zhou, W.H.; Hu, Y.H. Preparation and optical properties of ZnO@PPEGMA nanoparticles. Appl. Surf. Sci. 2009, 255, 7158–7163. [Google Scholar] [CrossRef]
- Sehlleier, Y.H.; Abdali, A.; Schnurre, S.M.; Wiggers, H.; Schulz, C. Surface functionalization of microwave plasma-synthesized silica nanoparticles for enhancing the stability of dispersions. J. Nanopart. Res. 2014, 16, 2557. [Google Scholar] [CrossRef]
- Melinte, V.; Stroea, L.; Buruiana, T.; Chibac, A.L. Photocrosslinked hybrid composites with Ag, Au or Au-Ag NPs as visible light triggered photocatalysts for degradation/reduction of aromatic nitroderivatives. Eur. Polym. J. 2019, 121, 109289. [Google Scholar] [CrossRef]
- Leong, K.H.; Chu, H.Y.; Ibrahim, S.; Saravanan, P. Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity. Beilstein J. Nanotechnol. 2015, 6, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Faisal, M.; Ismail, A.A.; Ibrahim, A.A.; Bouzid, H.; Al-Sayari, S.A. Highly efficient photocatalyst based on Ce doped ZnO nanorods: Controllable synthesis and enhanced photocatalytic activity. Chem. Eng. J. 2013, 229, 225–233. [Google Scholar] [CrossRef]
- Jayabharathi, J.; JebaSingh, I.; Arunpandiyan, A.; Karunakaran, C. Turn-off of fluorescence of styryl phenanthrimidazole on doping ZnO nanoparticles with Ce3+. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2015, 135, 264–269. [Google Scholar] [CrossRef]
- Guy, N.; Cakar, S.; Ozacar, M. Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for Congo red degradation. J. Colloid Interface Sci. 2016, 466, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Kubelka, P.; Munk, F. Ein BeitragzurOptik der Farbanstriche. Zeit. FürTekn. Physik 1931, 12, 593–601. [Google Scholar]
- Saravanan, R.; Karthikeyan, N.; Gupta, V.K.; Thirumal, E.; Thangadurai, P.; Narayanan, V.; Stephen, A. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng. C-Mater. Biol. Appl. 2013, 33, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, H.; Xu, Z.; Ma, W.; Cui, F.; Lu, G.; Xu, L.; Cui, T. The green synthesis of PdO/Pd anchored on hierarchical ZnOmicroflowers with a synthetic effect for the efficient catalytic reduction of 4-nitrophenol. New J. Chem. 2020, 44, 7035–7041. [Google Scholar] [CrossRef]
- Liu, H.; Feng, J.; Jie, W. A review of noble metal (Pd, Ag, Pt, Au)–zinc oxide nanocomposites: Synthesis, structures and applications. J. Mater. Sci. Mater. Electron. 2017, 28, 16585–16597. [Google Scholar] [CrossRef]
- Lee, S.J.; Jung, H.J.; Koutavarapu, R.; Lee, S.H.; Arumugam, M.; Kim, J.H.; Choi, M.Y. ZnO supported Au/Pd bimetallic nanocomposites for plasmon improved photocatalytic activity for methylene blue degradation under visible light irradiation. Appl. Surf. Sci. 2019, 496, 143665. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Olya, M.E.; Arabi, A.M.; Shariati, A.; KhosraviNikou, M.R. Synthesis, characterization and application of ZnO-Ag as a nanophotocatalyst for organic compounds degradation, mechanism and economic study. J. Environ. Sci. 2015, 35, 194–207. [Google Scholar] [CrossRef]
- Melinte, V.; Stroea, L.; Chibac-Scutaru, A.L. Polymer nanocomposites for photocatalytic applications. Catalysts 2019, 9, 986. [Google Scholar] [CrossRef] [Green Version]
- Begum, R.; Farooqi, Z.H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.L.; Irfan, A. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Crit. Rev. Anal. Chem. 2018, 48, 503–516. [Google Scholar] [CrossRef]
- Jiji, S.G.; Gopchandran, K.G. Shape dependent catalytic activity of unsupported gold nanostructures for the fast reduction of 4-nitroaniline. Colloid Interface Sci. Commun. 2019, 29, 9–16. [Google Scholar] [CrossRef]
- Dong, F.; Guo, W.; Park, S.K.; Ha, C.S. Controlled synthesis of novel cyanopropyl polysilsesquioxane hollow spheres loaded with highly dispersed Au nanoparticles for catalytic applications. Chem. Commun. 2012, 48, 1108–1110. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, K.T.; Willner, I.; Bossmann, S.H.; Braun, A.M. Lanthanide oxide-doped titanium dioxide photocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environ. Sci. Technol. 2001, 35, 1544–1549. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.W.; Gao, S.Y.; Wang, J.J. One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance. J. Phys. Chem. C 2008, 112, 16792–16800. [Google Scholar] [CrossRef]
- Farzadkia, M.; Bazrafshan, E.; Esrafili, A.; Yang, J.K.; Shirzad-Siboni, M. Photocatalytic degradation of Metronidazole with illuminated TiO2 nanoparticles. J. Environ Health Sci Eng. 2015, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Ghribi, F.; Sehailia, M.; Aoudjit, L.; Touahra, F.; Zioui, D.; Boumechhour, A.; Halliche, D.; Bachari, K.; Benmaamar, Z. Solar-light promoted photodegradation of metronidazole over ZnO-ZnAl2O4 heterojunction derived from 2D-layered double hydroxide structure. J. Photochem. Photobiol. A-Chem. 2020, 397, 112510. [Google Scholar] [CrossRef]
- Neghi, N.; Kumar, M.; Burkhalov, D. Synthesis and application of stable, reusable TiO2 polymeric composites for photocatalytic removal of metronidazole: Removal kinetics and density functional analysis. Chem. Eng. J. 2019, 359, 963–975. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Piccirillo, G.; Vinagreiro, C.S.; Pereira, M.M. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coord. Chem. Rev. 2019, 395, 63–85. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.C.; Juang, R.S. Degradation of methylene blue and methyl orange by palladium doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Xie, S.H.; Huang, P.; Kruzic, J.J.; Zeng, X.R.; Qian, H.X. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Sci. Rep. 2016, 6, 21947. [Google Scholar] [CrossRef] [Green Version]
- Al-Sabahi, J.; Bora, T.; Al-Abri, M.; Dutta, J. Controlled defects of zinc oxide nanorods for efficient visible light photocatalytic degradation of phenol. Materials 2016, 9, 238. [Google Scholar] [CrossRef] [Green Version]
Sample | CO-UDMA-Si | PPO-UDMA | Sil-ZnO | AgNO3 | HAuCl4·3H2O | Pd(NO3)2·2H2O |
---|---|---|---|---|---|---|
M0 | 70 | 30 | 0 | 0 | 0 | 0 |
M1 | 70 | 30 | 1 | 0 | 0 | 0 |
M1-Ag | 70 | 30 | 1 | 1.6 | 0 | 0 |
M1-Au | 70 | 30 | 1 | 0 | 2.0 | 0 |
M1-Pd | 70 | 30 | 1 | 0 | 0 | 2.5 |
Pollutant | Catalyst | Time (min) | Degradation Degree (%) | k (min−1) | Regression Coefficient (R2) |
---|---|---|---|---|---|
Methyl orange | No catalyst | 300 | 6.2 | 0.15 × 10−3 | 0.857 |
M1 | 300 | 10.3 | 0.26 × 10−3 | 0.811 | |
M1-Ag | 300 | 74.9 | 4.87 × 10−3 | 0.995 | |
M1-Au | 300 | 100 | 10.22 × 10−3 | 0.966 | |
M1-Pd | 300 | 43.3 | 2.04 × 10−3 | 0.985 | |
Phenol | No catalyst | 300 | 7.1 | 0.35 × 10−3 | 0.978 |
M1-Au | 300 | 68.1 | 4.00 × 10−3 | 0.977 | |
Metronidazole | No catalyst | 150 | 9.8 | 0.49 × 10−3 | 0.934 |
M1-Au | 150 | 99.7 | 31.53 × 10−3 | 0.959 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chibac-Scutaru, A.L.; Podasca, V.; Timpu, D.; Melinte, V. Comparative Study on the Influence of Noble Metal Nanoparticles (Ag, Au, Pd) on the Photocatalytic Activity of ZnO NPs Embedded in Renewable Castor Oil Polymer Matrices. Materials 2020, 13, 3468. https://doi.org/10.3390/ma13163468
Chibac-Scutaru AL, Podasca V, Timpu D, Melinte V. Comparative Study on the Influence of Noble Metal Nanoparticles (Ag, Au, Pd) on the Photocatalytic Activity of ZnO NPs Embedded in Renewable Castor Oil Polymer Matrices. Materials. 2020; 13(16):3468. https://doi.org/10.3390/ma13163468
Chicago/Turabian StyleChibac-Scutaru, Andreea L., Viorica Podasca, Daniel Timpu, and Violeta Melinte. 2020. "Comparative Study on the Influence of Noble Metal Nanoparticles (Ag, Au, Pd) on the Photocatalytic Activity of ZnO NPs Embedded in Renewable Castor Oil Polymer Matrices" Materials 13, no. 16: 3468. https://doi.org/10.3390/ma13163468
APA StyleChibac-Scutaru, A. L., Podasca, V., Timpu, D., & Melinte, V. (2020). Comparative Study on the Influence of Noble Metal Nanoparticles (Ag, Au, Pd) on the Photocatalytic Activity of ZnO NPs Embedded in Renewable Castor Oil Polymer Matrices. Materials, 13(16), 3468. https://doi.org/10.3390/ma13163468