Effect of Mineral Admixtures on the Sulfate Resistance of High-Strength Piles Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Specimen Preparation and Curing Conditions
2.3. Experimental Procedure
3. Results and Discussion
3.1. Compressive Strength Corrosion Resistance Coefficient
3.2. Visual Observation
3.3. Microstructural Investigations by XRD and SEM
3.4. Pore Structure Analysis
4. Conclusions
- (1)
- Compared with the blank specimen, the sulfate resistance of PHCP with mono doped QP decreased, but that of PHCP with mono dopes SG or FA increased. Furthermore, the sulfate attack of PHC with dual dopes QP, SG, and FA increased, respectively.
- (2)
- Adding mineral admixtures can decrease the size of pores. The reactive reaction, the filling and micro aggregate effect of QP and other additives can effectively improve the pore structure and increase the content of gel pores, inhibiting in this way the formation of large ettringite in the sulfate environment. The durability of autoclaved mortar was improved in this way.
- (3)
- Autoclaved curing changes pore size distribution and refine the aperture. However, the number of harmful holes mixed with QP20 increases, and sulfate resistance performance decreases.
Author Contributions
Funding
Conflicts of Interest
References
- López-Mesa, B.; Pitarch-Roig, A.-M.; Tomás, A.; Gallego, T. Comparison of environmental impacts of building structures with in situ cast floors and with precast concrete floors. Build. Environ. 2009, 44, 699–712. [Google Scholar] [CrossRef]
- Chan, T.K.; Poh, C.K. Behaviour of precast reinforced concrete pile caps. Constr. Build. Mater. 2000, 14, 73–78. [Google Scholar] [CrossRef]
- Lu, X.-C.; Li, G.-W.; Pei, H.-F.; Su, G.-Y.; Wu, J.-T.; Amenuvor, A.C. Experimental Investigations on Load Transfer of PHC Piles in Highway Foundation Using FBG Sensing Technology. Int. J. Geomech. 2017, 17, 1–12. [Google Scholar] [CrossRef]
- Alawad, O.A.; Alhozaimy, A.; Jaafar, M.S.; Aziz, F.N.A.; Al-Negheimish, A. Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag. Int. J. Concr. Struct. Mater. 2015, 9, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Alhozaimy, A.; Fares, G.; Al-Negheimish, A.; Jaafar, M.S. The autoclaved concrete industry: An easy-to-follow method for optimization and testing. Constr. Build. Mater. 2013, 49, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Ramezanianpour, A.M.; Esmaeili, K.; Ghahari, S.; Ramezanianpour, A.A. Influence of initial steam curing and different types of mineral additives on mechanical and durability properties of self-compacting concrete. Constr. Build. Mater. 2014, 73, 187–194. [Google Scholar] [CrossRef]
- He, Z.-M.; Long, G.-C.; Xie, Y.-J. Influence of subsequent curing on water sorptivity and pore structure of steam-cured concrete. J. Central South Univ. 2012, 19, 1155–1162. [Google Scholar] [CrossRef]
- Kim, J.-K.; Moon, Y.-H.; Eo, S.-H. Compressive strength development of concrete with different curing time and temperature. Cem. Concr. Res. 1998, 28, 1761–1773. [Google Scholar] [CrossRef]
- Xu, G.; Tian, Q.; Miao, J.; Liu, J. Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures. Constr. Build. Mater. 2017, 149, 367–377. [Google Scholar] [CrossRef]
- Bahafid, S.; Ghabezloo, S.; Duc, M.; Faure, P.; Sulem, J. Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density. Cem. Concr. Res. 2017, 95, 270–281. [Google Scholar] [CrossRef]
- Kjellsen, K.O.; Detwiler, R.J.; Gjørv, O.E. Pore structure of plain cement pastes hydrated at different temperatures. Cem. Concr. Res. 1990, 20, 927–933. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W. Comparative study on flexural properties of ultra-high performance concrete with supplementary cementitious materials under different curing regimes. Constr. Build. Mater. 2017, 136, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Bu, L.; Wang, Z.; Hu, G. Durability and microstructure of steam cured and autoclaved PHC pipe piles. Constr. Build. Mater. 2019, 209, 679–689. [Google Scholar] [CrossRef]
- Ilić, B.; Mitrović, A.; Miličić, L.; Zdujić, M. Compressive strength and microstructure of ordinary cured and autoclaved cement-based composites with mechanically activated kaolins. Constr. Build. Mater. 2018, 178, 92–101. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, S.; Huang, S.; He, Y. Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing. Cem. Concr. Res. 2000, 30, 1993–1998. [Google Scholar] [CrossRef]
- Tikkanen, J.; Cwirzen, A.; Penttala, V. Effects of mineral powders on hydration process and hydration products in normal strength concrete. Constr. Build. Mater. 2014, 72, 7–14. [Google Scholar] [CrossRef]
- Bahedh, M.A.; Jaafar, M.S. Ultra high-performance concrete utilizing fly ash as cement replacement under autoclaving technique. Case Stud. Constr. Mater. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Radlinski, M.; Olek, J. Investigation into the synergistic effects in ternary cementitious systems containing portland cement, fly ash and silica fume. Cem. Concr. Compos. 2012, 34, 451–459. [Google Scholar] [CrossRef]
- Pachideh, G.; Gholhaki, M. Effect of pozzolanic materials on mechanical properties and water absorption of autoclaved aerated concrete. J. Build. Eng. 2019, 26, 100856. [Google Scholar] [CrossRef]
- Gesoglu, M. Influence of steam curing on the properties of concretes incorporating metakaolin and silica fume. Mater. Struct. 2009, 43, 1123–1134. [Google Scholar] [CrossRef]
- Alhozaimy, A.; Jaafar, M.S.; Al-Negheimish, A.; Abdullah, A.; Taufiq-Yap, Y.H.; Noorzaei, J.; Alawad, O.A. Properties of high strength concrete using white and dune sands under normal and autoclaved curing. Constr. Build. Mater. 2012, 27, 218–222. [Google Scholar] [CrossRef]
- Chen, M.; Lu, L.; Wang, S.; Zhao, P.; Zhang, W.; Zhang, S. Investigation on the formation of tobermorite in calcium silicate board and its influence factors under autoclaved curing. Constr. Build. Mater. 2017, 143, 280–288. [Google Scholar] [CrossRef]
- Tan, W.; Zhu, G.; Liu, Y.; Zhang, Z.; Liu, L. Effects and mechanism research of the crystalline state for the semi-crystalline calcium silicate. Cem. Concr. Res. 2015, 72, 69–75. [Google Scholar] [CrossRef]
- Xue, L.L.; Shen, Y. Effect of Mineral Admixture on Mechanical Property of PHC Pile Concrete. Adv. Mater. Res. 2014, 919, 1775–1779. [Google Scholar] [CrossRef]
- Wu, J.H.; Liu, Y.L. Influence of Mineral Admixtures on the Carbonation Resistance and Chloride Permeability of Steam-Cured HPC. Key Eng. Mater. 2011, 477, 366–374. [Google Scholar] [CrossRef]
- Tan, K.; Zhu, J. Influences of steam and autoclave curing on the strength and chloride permeability of high strength concrete. Mater. Struct. 2016, 50, 56. [Google Scholar] [CrossRef]
- Wei, Y.L.; Li, L. Opinions on the Applicability of Prestressed Concrete Pipe Piles in Highly Corrosive Environment; China Cement Products Association: Tanjin, China, 2012. [Google Scholar]
- Xu, G.L.; Jiang, Z.P.; He, Y.H. Study on PHC Pipe Pile Resistance to Sulfate Corrosion. Con. Cem. Prod. 2010, 4, 37–39. [Google Scholar]
- Nie, Q.; Zhou, C.; Shu, X.; He, Q.; Huang, B. Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China. Materials 2014, 7, 3772–3785. [Google Scholar] [CrossRef]
- Qi, B.; Gao, J.; Chen, F.; Shen, D. Evaluation of the damage process of recycled aggregate concrete under sulfate attack and wetting-drying cycles. Constr. Build. Mater. 2017, 138, 254–262. [Google Scholar] [CrossRef]
- Li, J.; Xie, F.; Zhao, G.; Li, L. Experimental and numerical investigation of cast-in-situ concrete under external sulfate attack and drying-wetting cycles. Constr. Build. Mater. 2020, 249, 118789. [Google Scholar] [CrossRef]
- GB/T 175-2007. Common Portland Cement; Chinese Standard Institution Press: Beijing, China, 2007.
- GB/T 50146-2014. Technical Code for Application of Fly Ash Concrete; Chinese Standard Institution Press: Beijing, China, 2014.
- GB/T 17671-1999. Method of Testing Cement-Determination of Strength; Chinese Standard Institution Press: Beijing, China, 1999.
- GB/T 50082-2009. Standard for Test Method of Long-Term Performance and Durability of Ordinary Concrete; China Architecture and Building Press: Beijing, China, 2009.
- Bahafid, S.; Ghabezloo, S.; Faure, P.; Duc, M.; Sulem, J. Effect of the hydration temperature on the pore structure of cement paste: Experimental investigation and micromechanical modelling. Cem. Concr. Res. 2018, 111, 1–14. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- Li, H.; Sun, W.; Zuo, X.B. Microscopic analysis on how mineral admixtures improve the sulfate erosion resistance of cement based materials. J. J. Chin. Ceram. Soc. 2012, 40, 1119–1126. [Google Scholar]
- Skaropoulou, A.; Sotiriadis, K.; Kakali, G.; Tsivilis, S. Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cem. Concr. Compos. 2013, 37, 267–275. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, D.; Chen, H. The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete. Cem. Concr. Compos. 2017, 83, 125–137. [Google Scholar] [CrossRef]
- Poon, C.S.; Kou, S.C.; Lam, L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mater. 2006, 20, 858–865. [Google Scholar] [CrossRef]
- Ma, X.; Liu, J.; Wu, Z.; Shi, C. Effects of SAP on the properties and pore structure of high-performance cement-based materials. Constr. Build. Mater. 2017, 131, 476–484. [Google Scholar] [CrossRef]
- Benezet, J.C.; Benhassaine, A. Grinding and pozzolanic reactivity of quartz powders. Powder Technol. 1990, 105, 167–171. [Google Scholar] [CrossRef]
Fineness (wt. %) | Setting Time (min) | Flexural Strength (MPa) | Compressive Strength (MPa) | |||
---|---|---|---|---|---|---|
Initial Setting | Final Setting | 3 d | 28 d | 3 d | 28 d | |
1.8 | 100 | 160 | 4.8 | 7.9 | 22.7 | 47.0 |
Mineral Admixture | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | SO3 | Loss |
---|---|---|---|---|---|---|---|---|---|
OPC | 22.62 | 6.11 | 3.69 | 57.96 | 2.16 | 0.98 | 0.17 | 3.00 | 2.6 |
QP | 90.4 | 1.99 | 0.56 | 1.68 | 0.18 | 0.21 | 0.05 | 0.06 | 1.15 |
SG | 34.43 | 14.64 | 1.08 | 40.78 | 6.78 | 0.31 | 0.33 | 2.12 | 0.87 |
FA | 51.20 | 29.20 | 7.10 | 6.80 | 1.20 | 0.15 | 0.2 | 0.90 | 2.10 |
Sample | OPC | QP20 | SG20 | SG30 | FA10 | QP10SG20 | QP10FA20 | |
---|---|---|---|---|---|---|---|---|
K15 | R2(Mpa)/R1(Mpa) | 96.2/94.3 | 95.9/93.1 | 104.7/99.7 | 102.6/96.8 | 84.6/82.9 | 103.4/99.4 | 82.3/79.1 |
R2/R1 | 1.02 | 1.03 | 1.05 | 1.06 | 1.02 | 1.04 | 1.04 | |
K90 | R2(Mpa)/R1(Mpa) | 106.8/94.5 | 103.2/93.0 | 114.2/100.2 | 110.0/96.5 | 92.8/82.9 | 115.5/99.6 | 86.9/79.0 |
R2/R1 | 1.13 | 1.10 | 1.14 | 1.14 | 1.12 | 1.16 | 1.10 | |
K150 | R2(Mpa)/R1(Mpa) | 106.5/95.1 | 102.3/93.0 | 113.5/100.4 | 109.2/97.1 | 90.4/82.2 | 112.8/99.8 | 90.9/79.7 |
R2/R1 | 1.12 | 1.02 | 1.13 | 1.12 | 1.10 | 1.13 | 1.14 | |
K240 | R2(Mpa)/R1(Mpa) | 70.5/95.3 | 49.4/92.6 | 77.7/100.9 | 78.0/97.5 | 64.2/83.4 | 75.9/99.9 | 56.9/79.0 |
R2/R1 | 0.72 | 0.53 | 0.77 | 0.80 | 0.77 | 0.76 | 0.72 | |
K300 | R2(Mpa)/R1(Mpa) | 44.7/95.2 | -/93.7 | 53.2/100.3 | 53.6/97.5 | 44.3/83.5 | 55.0/98.3 | 42.4/81.6 |
R2/R1 | 0.47 | - | 0.53 | 0.55 | 0.53 | 0.56 | 0.52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Ma, L.; He, T. Effect of Mineral Admixtures on the Sulfate Resistance of High-Strength Piles Mortar. Materials 2020, 13, 3500. https://doi.org/10.3390/ma13163500
Hu Y, Ma L, He T. Effect of Mineral Admixtures on the Sulfate Resistance of High-Strength Piles Mortar. Materials. 2020; 13(16):3500. https://doi.org/10.3390/ma13163500
Chicago/Turabian StyleHu, Yanyan, Linlin Ma, and Tingshu He. 2020. "Effect of Mineral Admixtures on the Sulfate Resistance of High-Strength Piles Mortar" Materials 13, no. 16: 3500. https://doi.org/10.3390/ma13163500
APA StyleHu, Y., Ma, L., & He, T. (2020). Effect of Mineral Admixtures on the Sulfate Resistance of High-Strength Piles Mortar. Materials, 13(16), 3500. https://doi.org/10.3390/ma13163500