High MB Solution Degradation Efficiency of FeSiBZr Amorphous Ribbon with Surface Tunnels
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagent
2.2. Characterization
2.3. Degradation Tests
2.4. Electrochemical Tests
3. Results
3.1. XRD, DSC and TEM Analysis
3.2. Degradation Performance
3.3. Surface Morphology
3.4. Electrochemical Analysis
3.5. Effect of pH on Ribbon Degradation
3.6. Effect of H2O2 Concentration on Ribbon Degradation and Surface Morphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl. Catal. B 2002, 39, 75–90. [Google Scholar] [CrossRef]
- Fu, F.L.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Choi, W. Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2. J. Photochem. Photobiol. A 2003, 159, 241–247. [Google Scholar] [CrossRef]
- Djilani, C.; Zaghdoudi, R.; Djazi, F.; Bouchekima, B.; Lallam, A.; Modarressi, A.; Rogalski, M. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J. Taiwan Inst. Chem. Eng. 2015, 53, 112–121. [Google Scholar] [CrossRef]
- Pawar, R.R.; Gupta, P.; Sawant, S.Y.; Shahmoradi, B.; Lee, S.M. Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution. Int. J. Biol. Macromol. 2018, 114, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Nigam, P.; Banat, I.M.; Singh, D.; Marchant, R. Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem. 1996, 31, 435–442. [Google Scholar] [CrossRef]
- Lucas, M.; Peres, J. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm. 2006, 71, 236–244. [Google Scholar] [CrossRef]
- Shende, A.G.; Tiwari, C.S.; Bhoyar, T.H.; Vidyasagar, D.; Umare, S.S. BWO nano-octahedron coupled with layered g-C3N4: An efficient visible light active photocatalyst for degradation of cationic/anionic dyes, and N2 reduction. J. Mol. Liq. 2019, 296, 111771. [Google Scholar] [CrossRef]
- Tan, W.B.; Wang, L.; Yu, H.X.; Zhang, H.; Zhang, X.H.; Jia, Y.F.; Li, T.T.; Dang, Q.L.; Cui, D.Y.; Xi, B.D. Accelerated microbial reduction of azo dye by using biochar from iron-rich-biomass pyrolysis. Materials 2019, 12, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.Z.; Liu, J.F.; Chen, D.; Qin, Q.D.; Wu, Y.; Huang, F.; Li, W. Preparation of FeOOH/Cu with high catalytic activity for degradation of organic dyes. Materials 2019, 12, 338. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.J.; Kang, H.L.; Ai, Z.H. Comparison of aerobic atrazine degradation with zero valent aluminum and zero valent iron. J. Hazard. Mater. 2018, 357, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.K.; Ghaffari, Y.; Bae, J.; Kim, K.S. Synthesis of coral-like α-Fe2O3 nanoparticles for dye degradation at neutral pH. J. Mol. Liq. 2020, 301, 112473. [Google Scholar] [CrossRef]
- Bhatt, C.S.; Nagaraj, B.; Suresh, A.K. Nanoparticles-shape influenced high-efficient degradation of dyes: Comparative evaluation of nano-cubes vs nano-rods vs nano-spheres. J. Mol. Liq. 2017, 242, 958–965. [Google Scholar] [CrossRef]
- Li, X.N.; Li, J.H.; Shi, W.L.; Bao, J.F.; Yang, X.Y. A Fenton-like nanocatalyst based on easily separated magnetic nanorings for oxidation and degradation of dye pollutant. Materials 2020, 13, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tara, N.; Arslan, M.; Hussain, Z.; Iqbal, M.; Khan, Q.M.; Afzal, M. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J. Clean. Prod. 2019, 217, 541–548. [Google Scholar] [CrossRef]
- Lin, B.; Bian, X.F.; Wang, P.; Luo, G.P. Application of Fe-based metallic glasses in wastewater treatment. Mater. Sci. Eng. B 2012, 177, 92–95. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Zhu, Z.W.; Zhang, H.F.; Hu, Z.Q. Rapid reductive degradation of azo dyes by a unique structure of amorphous alloys. Chin. Sci. Bull. 2011, 56, 3988–3992. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.C.; Kim, K.B.; Yu, P.; Zhang, W.Y.; Kunz, U.; Eckert, J. Amorphization in mechanically alloyed (Ti, Zr, Nb)-(Cu, Ni)-Al equiatomic alloys. J. Alloys Compd. 2007, 428, 157–163. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Si, J.J.; Song, J.G.; Yang, Q.; Hui, X.D. Synthesis of Mg-Zn-Ca metallic glasses by gas-atomization and their excellent capability in degrading azo dyes. Mater. Sci. Eng. B 2014, 181, 46–55. [Google Scholar] [CrossRef]
- Wang, J.Q.; Liu, Y.H.; Chen, M.W.; Louzguine-Luzgin, D.V.; Inoue, A.; Perepezko, J.H. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders. Sci. Rep. 2012, 2, 418. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Pang, J.; Yan, Z.C.; Hu, Y.H.; Guo, L.Y.; Zhang, H.; Zhang, L.C.; Wang, W.M. MgZn-based amorphous ribbon as a benign decolorizer in methyl blue solution. J. Non Cryst. Solids 2020, 529, 119802. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, Z.C.; Guo, L.Y.; Zhang, H.; Zhang, L.C.; Kim, K.; Li, X.Y.; Wang, W.M. Enhancing the acid orange dye degradation efficiency of Mg-based glassy alloys with introducing porous structure and zinc oxide. J. Alloys Compd. 2020, 831, 154817. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Zhu, Z.W.; Zhang, H.F. Mg-based amorphous alloys for decolorization of azo dyes. Results Phys. 2017, 7, 2054–2056. [Google Scholar] [CrossRef]
- Shaheen, K.; Suo, H.L.; Shah, Z.; Khush, L.; Arshad, T.; Khan, S.B.; Siddique, M.; Ma, L.; Liu, M.; Cui, J.; et al. Ag-Ni and Al-Ni nanoparticles for resistive response of humidity and photocatalytic degradation of methyl orange dye. Mater. Chem. Phys. 2020, 244, 122748. [Google Scholar] [CrossRef]
- Das, S.; Garrison, S.; Mukherjee, S. Bi-functional mechanism in degradation of toxic water pollutants by catalytic amorphous metals. Adv. Eng. Mater. 2016, 18, 214–218. [Google Scholar] [CrossRef]
- Wang, P.P.; Wang, J.Q.; Li, H.; Yang, H.; Huo, J.T.; Wang, J.G.; Chang, C.T.; Wang, X.M.; Li, R.W.; Wang, G. Fast decolorization of azo dyes in both alkaline and acidic solutions by Al-based metallic glasses. J. Alloys Compd. 2017, 701, 759–767. [Google Scholar] [CrossRef]
- Sha, Y.Y.; Mathew, I.; Cui, Q.Z.; Clay, M.; Gao, F.; Zhang, X.Q.J.; Gu, Z.Y. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles. Chemosphere 2016, 144, 1530–1535. [Google Scholar] [CrossRef]
- Mondal, A.; Adhikary, B.; Mukherjee, D. Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation. Colloids Surf. 2015, 482, 248–257. [Google Scholar] [CrossRef]
- Taneja, P.; Sharma, S.; Umar, A.; Mehta, S.K.; Ibhadon, A.O.; Kansal, S.K. Visible-light driven photocatalytic degradation of brilliant green dye based on cobalt tungstate (CoWO4) nanoparticles. Mater. Chem. Phys. 2018, 211, 335–342. [Google Scholar] [CrossRef]
- Wang, J.Q.; Liu, Y.H.; Chen, M.W.; Xie, G.Q.; Louzguine Luzgin, D.V.; Inoue, A.; Perepezko, J.H. Rapid degradation of Azo dye by Fe-based metallic glass powder. Adv. Funct. Mater. 2012, 22, 2567–2570. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Chen, M.X.; Lin, P.H.; Cui, Z.Q.; Chu, C.G.; Shen, B.L. Investigation of FePC amorphous alloys with self-renewing behaviour for highly efficient decolorization of methylene blue. J. Mater. Chem. A 2018, 6, 10686–10699. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, J.L.; Zha, M.Q.; Shek, C.H. Synthesis of an Fe rich amorphous structure with a catalytic effect to rapidly decolorize Azo dye at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 5500–5505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.C.; Jia, Z.; Lyu, F.; Liang, S.X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576. [Google Scholar] [CrossRef]
- Liang, S.X.; Jia, Z.; Liu, Y.J.; Zhang, W.C.; Wang, W.M.; Lu, J. Compelling rejuvenated catalytic performance in metallic glasses. Adv. Mater. 2018, 30, 1802764. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Zhang, W.C.; Wang, W.M.; Habibi, D.; Zhang, L.C. Amorphous Fe78Si9B13 alloy: An efficient and reusable photo-enhanced Fenton-like catalyst in degradation of cibacron brilliant red 3B-A dye under UV-vis light. Appl. Catal. B 2016, 192, 46–56. [Google Scholar] [CrossRef]
- Liang, S.X.; Wang, X.Q.; Zhang, W.C.; Liu, Y.J.; Wang, W.M.; Zhang, L.C. Selective laser melting manufactured porous Fe-based metallic glass matrix composite with remarkable catalytic activity and reusability. Appl. Mater. Tod. 2020, 19, 100543. [Google Scholar] [CrossRef]
- Jia, Z.; Liang, S.X.; Zhang, W.C.; Wang, W.M.; Yang, C.; Zhang, L.C. Heterogeneous photo Fenton-like degradation of cibacron brilliant red 3B-A dye using amorphous Fe78Si9B13 and Fe73.5Si13.5B9Cu1Nb3 alloys: The influence of adsorption. J. Taiwan Inst. Chem. Eng. 2017, 71, 128–136. [Google Scholar] [CrossRef]
- Jia, Z.; Kang, J.; Zhang, W.C.; Wang, W.M.; Yang, C.; Sun, H.; Habibi, D.; Zhang, L.C. Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment. Appl. Catal. B 2017, 204, 537–547. [Google Scholar] [CrossRef]
- Xie, S.; Huang, P.; Kruzic, J.J.; Zeng, X.; Qian, H. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Sci. Rep. 2016, 6, 21947. [Google Scholar] [CrossRef] [Green Version]
- Tschopp, M.A.; Horstemeyer, M.F.; Gao, F.; Sun, X.; Khaleel, M. Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies. Scr. Mater. 2011, 64, 908–911. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Tratnyek, P.G. Reduction of azo dyes with zero-valent iron. Water Res. 2000, 34, 1837–1845. [Google Scholar] [CrossRef]
- Jia, C.G.; Pang, J.; Pan, S.P.; Zhang, Y.J.; Kim, K.B.; Qin, J.Y.; Wang, W.M. Tailoring the corrosion behavior of Fe-based metallic glasses through inducing Nb-triggered netlike structure. Corros. Sci. 2019, 147, 94–107. [Google Scholar] [CrossRef]
- Li, G.H.; Wang, W.M.; Bian, X.F.; Zhang, J.T.; Li, R.; Wang, L. Comparing the dynamic and thermodynamic behaviors of Al86Ni9-La5/(La0.5Ce0.5)5 amorphous alloys. J. Alloys Compd. 2009, 478, 745–749. [Google Scholar] [CrossRef]
- Guo, L.Y.; Wang, X.; Shen, K.C.; Kim, K.B.; Lan, S.; Wang, X.L.; Wang, W.M. Structure modification and recovery of amorphous Fe73.5Si13.5B9Nb3Cu1 magnetic ribbons after autoclave treatment: SAXS and thermodynamic analysis. J. Mater. Sci. Technol. 2019, 35, 118–126. [Google Scholar] [CrossRef]
- Sokolov, A.P.; Kisliuk, A.; Soltwisch, M.; Quitmann, D. Medium-range order in glasses: Comparison of Raman and diffraction measurements. Phys. Rev. Lett. 1992, 69, 1540–1542. [Google Scholar] [CrossRef]
- Wang, W.M.; Zhang, W.X.; Gebert, A.; Roth, S.; Mickel, C.; Schultz, L. Microstructure and Magnetic Properties in Fe61Co9−xZr8Mo5WxB17 (0 ≤ × ≤ 3) Glasses and Glass-Matrix Composites. Metall. Mater. Trans. A 2009, 40, 511–521. [Google Scholar] [CrossRef]
- Yavari, A.R.; Moulec, A.L.; Inoue, A.; Nishiyama, N.; Lupu, N.; Matsubara, E.; Botta, W.J.; Vaughan, G.; Michiel, M.D.; Kvick, Å. Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater. 2005, 53, 1611–1619. [Google Scholar] [CrossRef]
- Muneyuki, I.; Shigeo, S.; Hisato, K.; Matsubara, E.; Inoue, A. Crystallization behavior of amorphous Fe90−XNb10BX (X = 10 and 30) alloys. Mater. Trans. 2000, 11, 1526–1529. [Google Scholar]
Alloy | Before Reacted | After Reacted | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
cFe | cSi | cB | cZr | cO | cFe | cSi | cB | cZr | cO | |
Zr0 | 77.8 | 8.7 | 10.9 | - | 2.6 | 76.3 | 8.6 | 10.5 | - | 4.6 |
Zr0.5 | 75.5 | 7.9 | 13.0 | 0.7 | 2.9 | 62.1 | 7.1 | 11.3 | 0.8 | 18.7 |
Zr1 | 76.1 | 9.0 | 10.3 | 1.4 | 3.2 | 53.4 | 8.5 | 9.6 | 1.6 | 26.9 |
Solution | Alloy | Rs (Ω·cm2) | Qf | Rf (Ω·cm2) | Qa | Ra (Ω·cm2) | Rtotal (Ω·cm2) | ||
---|---|---|---|---|---|---|---|---|---|
Yf (Ω−1·s−n·cm−2) | Nf | Ya (Ω−1·s−n·cm−2) | Na | ||||||
DW | Zr0 | 95.3 | 5.3 × 10−9 | 0.99 | 895.7 | 5.2 × 10−9 | 0.98 | 511.0 | 1502.0 |
Zr0.5 | 125.7 | 3.4 × 10−9 | 0.99 | 1932.2 | 3.5 × 10−8 | 0.85 | 593.0 | 2650.9 | |
Zr1 | 147.6 | 7.8 × 10−9 | 0.95 | 2842.3 | 8.7 × 10−9 | 0.99 | 716.4 | 3706.3 | |
MO | Zr0 | 18.3 | 4.8 × 10−8 | 0.99 | 211.2 | 3.4 × 10−5 | 0.91 | 28.4 | 257.9 |
Zr0.5 | 21.1 | 3.9 × 10−8 | 0.98 | 250.7 | 3.0 × 10−5 | 0.92 | 33.7 | 305.5 | |
Zr1 | 24.5 | 3.8 × 10−8 | 0.99 | 274.7 | 2.5 × 10−5 | 0.93 | 39.3 | 338.5 |
Element | CH2O2 (mM) | |||||
---|---|---|---|---|---|---|
0 | 0.5 | 5 | 10 | 30 | 50 | |
cFe | 69.7 | 61.1 | 47.2 | 43.9 | 36.4 | 29.5 |
cSi | 8.3 | 8.5 | 8.7 | 8.1 | 8.6 | 8.8 |
cB | 9.6 | 10.8 | 9.2 | 9.9 | 9.7 | 9.5 |
cZr | 1.5 | 1.4 | 1.7 | 1.6 | 1.4 | 1.3 |
cO | 10.9 | 18.2 | 33.2 | 36.5 | 43.9 | 50.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Yan, Z.; Zhang, H.; Zhang, L.-C.; Ma, H.; Wang, W.; Wang, W. High MB Solution Degradation Efficiency of FeSiBZr Amorphous Ribbon with Surface Tunnels. Materials 2020, 13, 3694. https://doi.org/10.3390/ma13173694
Chen Q, Yan Z, Zhang H, Zhang L-C, Ma H, Wang W, Wang W. High MB Solution Degradation Efficiency of FeSiBZr Amorphous Ribbon with Surface Tunnels. Materials. 2020; 13(17):3694. https://doi.org/10.3390/ma13173694
Chicago/Turabian StyleChen, Qi, Zhicheng Yan, Hao Zhang, Lai-Chang Zhang, Haijian Ma, Wenlong Wang, and Weimin Wang. 2020. "High MB Solution Degradation Efficiency of FeSiBZr Amorphous Ribbon with Surface Tunnels" Materials 13, no. 17: 3694. https://doi.org/10.3390/ma13173694
APA StyleChen, Q., Yan, Z., Zhang, H., Zhang, L. -C., Ma, H., Wang, W., & Wang, W. (2020). High MB Solution Degradation Efficiency of FeSiBZr Amorphous Ribbon with Surface Tunnels. Materials, 13(17), 3694. https://doi.org/10.3390/ma13173694