Biocomposites from Organic Solid Wastes Derived Biochars: A Review
Abstract
:1. Introduction
2. Biochar
2.1. Biochar Properties
2.2. Biochar Applications
3. Biochar Composites
3.1. Interfacial Characteristics
3.2. Mechanical Properties
3.3. Thermal Properties
3.4. Electrical Properties
4. Conclusion and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Das, S.; Lee, S.-H.; Kumar, P.; Kim, K.-H.; Lee, S.S.; Bhattacharya, S.S. Solid waste management: Scope and the challenge of sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Saidan, M.; Hararah, M.; Rawajfeh, K.; Alkhasawneh, H.E.; Al-Shannag, M. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew. Sustain. Energy Rev. 2017, 67, 295–314. [Google Scholar] [CrossRef]
- Sarkar, P.; Chourasia, R. Bioconversion of organic solid wastes into biofortified compost using a microbial consortium. Int. J. Recycl. Org. Waste Agric. 2017, 6, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Balachandar, G.; Das, D. Improvement in biohythane production using organic solid waste and distillery effluent. Waste Manag. (Oxford) 2017, 66, 70–78. [Google Scholar] [CrossRef]
- Li, X.; Mei, Q.; Dai, X.; Ding, G. Effect of anaerobic digestion on sequential pyrolysis kinetics of organic solid wastes using thermogravimetric analysis and distributed activation energy model. Bioresour. Technol. 2017, 227, 297–307. [Google Scholar] [CrossRef]
- Zhang, Q.; Khan, M.U.; Lin, X.; Yi, W.; Lei, H. Green-composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes. J. Clean. Prod. 2020, 262, 121251. [Google Scholar] [CrossRef]
- Fox, J.A.; Stacey, N.T. Process targeting: An energy based comparison of waste plastic processing technologies. Energy 2019, 170, 273–283. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Sepe, R.; Bollino, F.; Boccarusso, L.; Caputo, F. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos. Part B Eng. 2018, 133, 210–217. [Google Scholar] [CrossRef]
- Mittal, V.; Saini, R.; Sinha, S. Natural fiber-mediated epoxy composites–A review. Compos. Part B Eng. 2016, 99, 425–435. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Cai, H.; Lin, X.; Yi, W.; Zhang, J. Properties comparison of high density polyethylene composites filled with three kinds of shell fibers. Results Phys. 2019, 12, 1542–1546. [Google Scholar] [CrossRef]
- Lau, K.-T.; Hung, P.-Y.; Zhu, M.-H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos. Part B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Essabir, H.; Bensalah, M.O.; Rodrigue, D.; Bouhfid, R.; el kacem Qaiss, A. Biocomposites based on argan nut shell and a polymer matrix: Effect of filler content and coupling agent. Carbohydr. Polym. 2016, 143, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Oguz, O.; Simsek, E.; Kosak Soz, C.; Kasli Heinz, O.; Yilgor, E.; Yilgor, I.; Menceloglu, Y.Z. Effect of filler content on the structure-property behavior of poly (ethylene oxide) based polyurethaneurea-silica nanocomposites. Polymer Eng. Sci. 2018, 58, 1097–1107. [Google Scholar] [CrossRef]
- Kaewkuk, S.; Sutapun, W.; Jarukumjorn, K. Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Compos. Part B Eng. 2013, 45, 544–549. [Google Scholar] [CrossRef]
- Kalia, S.; Thakur, K.; Celli, A.; Kiechel, M.A.; Schauer, C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. J. Environ. Chem. Eng. 2013, 1, 97–112. [Google Scholar] [CrossRef]
- Ogawa, T.; Mukai, H.; Osawa, S. Improvement of the mechanical properties of an ultrahigh molecular weight polyethylene fiber/epoxy composite by corona-discharge treatment. J. Appl. Polym. Sci. 2001, 79, 1162–1168. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Huang, L.; Kasal, B. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr. Build. Mater. 2016, 112, 168–182. [Google Scholar] [CrossRef]
- Pasquini, D.; de Morais Teixeira, E.; da Silva Curvelo, A.A.; Belgacem, M.N.; Dufresne, A. Surface esterification of cellulose fibres: Processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos. Sci. Technol. 2008, 68, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Chowdhury, S.; Roy, D.; Adhikari, B.; Kim, J.K.; Thomas, S. A brief review on the chemical modifications of lignocellulosic fibers for durable engineering composites. Polym. Bull. 2016, 73, 587–620. [Google Scholar] [CrossRef]
- Michałowski, S.; Prociak, A.; Zajchowski, S.; Tomaszewska, J.; Mirowski, J. Porous product with reduced apparent density keeps good mechanical properties. Extruded composites of poly (vinyl chloride) blown under microwave irradiation. Polym. Test. 2017, 64, 229–234. [Google Scholar] [CrossRef]
- Alam, A.; Wan, C.; McNally, T. Surface amination of carbon nanoparticles for modification of epoxy resins: Plasma-treatment vs. wet-chemistry approach. Eur. Polym. J. 2017, 87, 422–448. [Google Scholar] [CrossRef]
- Wu, D.; Wang, X.; Song, Y.; Jin, R. Nanocomposites of poly (vinyl chloride) and nanometric calcium carbonate particles: Effects of chlorinated polyethylene on mechanical properties, morphology, and rheology. J. Appl. Polym. Sci. 2004, 92, 2714–2723. [Google Scholar] [CrossRef]
- Wu, N.; Lang, S. Flame retardancy and toughness modification of flame retardant polycarbonate/acrylonitrile-butadiene-styrene/AHP composites. Polym. Degrad. Stab. 2016, 123, 26–35. [Google Scholar] [CrossRef]
- Mishra, S.; Naik, J.; Patil, Y. The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos. Sci. Technol. 2000, 60, 1729–1735. [Google Scholar] [CrossRef]
- Zhang, Q.; Lei, H.; Cai, H.; Han, X.; Lin, X.; Qian, M.; Zhao, Y.; Huo, E.; Villota, E.M.; Mateo, W. Improvement on the properties of microcrystalline cellulose/polylactic acid composites by using activated biochar. J. Clean. Prod. 2020, 252, 119898. [Google Scholar] [CrossRef]
- Khan, A.; Savi, P.; Quaranta, S.; Rovere, M.; Giorcelli, M.; Tagliaferro, A.; Rosso, C.; Jia, C.Q. Low-cost carbon fillers to improve mechanical properties and conductivity of epoxy composites. Polymers 2017, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, D.S.; Adhikari, S.; Shojaeiarani, J.; Bajwa, S.G.; Pandey, P.; Shanmugam, S.R. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer. Constr. Build. Mater. 2019, 204, 193–202. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Deng, Q.; Li, D. Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties. Mater. Design 2015, 85, 54–59. [Google Scholar] [CrossRef]
- Behazin, E.; Misra, M.; Mohanty, A.K. Compatibilization of toughened polypropylene/biocarbon biocomposites: A full factorial design optimization of mechanical properties. Polym. Test. 2017, 61, 364–372. [Google Scholar] [CrossRef]
- Das, O.; Bhattacharyya, D.; Hui, D.; Lau, K.-T. Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Compos. Part B Eng. 2016, 106, 120–128. [Google Scholar] [CrossRef]
- Li, Z.; Reimer, C.; Wang, T.; Mohanty, A.K.; Misra, M. Thermal and mechanical properties of the biocomposites of miscanthus biocarbon and poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate)(PHBV). Polymers 2020, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, H.; Lu, W.; Zhang, D.; Ren, X.; Yu, W.; Wu, J.; Zhou, L.; Han, X.; Yi, W. Properties evaluation of biochar/high-density polyethylene composites: Emphasizing the porous structure of biochar by activation. Sci. Total Environ. 2020, 737, 139770. [Google Scholar] [CrossRef] [PubMed]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Arbogast, S.; Bellman, D.; Paynter, J.; Wykowski, J. Advanced biofuels from pyrolysis oil… Opportunities for cost reduction. Fuel Process. Technol. 2013, 106, 518–525. [Google Scholar] [CrossRef]
- Ingram, L.; Mohan, D.; Bricka, M.; Steele, P.; Strobel, D.; Crocker, D.; Mitchell, B.; Mohammad, J.; Cantrell, K.; Pittman, C.U., Jr. Pyrolysis of wood and bark in an auger reactor: Physical properties and chemical analysis of the produced bio-oils. Energy Fuels 2008, 22, 614–625. [Google Scholar] [CrossRef]
- Di Blasi, C. Heat transfer mechanisms and multi-step kinetics in the ablative pyrolysis of cellulose. Chem. Eng. Sci. 1996, 51, 2211–2220. [Google Scholar] [CrossRef]
- Li, Z.; Li, N.; Yi, W.; Fu, P.; Li, Y.; Bai, X. Design and operation of a down-tube reactor demonstration plant for biomass fast pyrolysis. Fuel Process. Technol. 2017, 161, 182–192. [Google Scholar] [CrossRef]
- Lappas, A.; Dimitropoulos, V.; Antonakou, E.; Voutetakis, S.; Vasalos, I. Design, construction, and operation of a transported fluid bed process development unit for biomass fast pyrolysis: Effect of pyrolysis temperature. Ind. Eng. Chem. Res. 2008, 47, 742–747. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, M.; Liu, H.; Li, L.; Ma, C.; Song, Z. A microwave reactor for characterization of pyrolyzed biomass. Bioresour. Technol. 2012, 104, 673–678. [Google Scholar] [CrossRef]
- Gonzaga, M.I.S.; Mackowiak, C.L.; Comerford, N.B.; da Veiga Moline, E.F.; Shirley, J.P.; Guimaraes, D.V. Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition. Soil Tillage Res. 2017, 165, 59–65. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C.; Park, Y.-K. Production and utilization of biochar: A review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, D.; Xu, H.; Lu, W.; Ren, X.; Cai, H.; Lei, H.; Huo, E.; Zhao, Y.; Qian, M. Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes. Ind. Crops Prod. 2020, 146, 112185. [Google Scholar] [CrossRef]
- Fu, P.; Yi, W.; Li, Z.; Bai, X.; Wang, L. Evolution of char structural features during fast pyrolysis of corn straw with solid heat carriers in a novel V-shaped down tube reactor. Energy Convers. Manag. 2017, 149, 570–578. [Google Scholar] [CrossRef]
- Fu, P.; Bai, X.; Yi, W.; Li, Z.; Li, Y. Fast pyrolysis of wheat straw in a dual concentric rotary cylinder reactor with ceramic balls as recirculated heat carrier. Energy Convers. Manag. 2018, 171, 855–862. [Google Scholar] [CrossRef]
- Pariyar, P.; Kumari, K.; Jain, M.K.; Jadhao, P.S. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 2020, 713, 136433. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Lustosa Filho, J.F.; Melo, L.C.A.; de Assis, I.R.; de Oliveira, T.S. Influence of pyrolysis temperature and feedstock on the properties of biochars produced from agricultural and industrial wastes. J. Anal. Appl. Pyrolysis 2020, 149, 104839. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Cui, Y.; Xue, Z.; Ba, Y. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Bioresour. Technol. 2018, 263, 444–449. [Google Scholar] [CrossRef]
- Ferjani, A.I.; Jeguirim, M.; Jellali, S.; Limousy, L.; Courson, C.; Akrout, H.; Thevenin, N.; Ruidavets, L.; Muller, A.; Bennici, S. The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties. Renew. Sustain. Energy Rev. 2019, 107, 425–433. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, Y.; Ma, Q.; Zhou, H.; Luo, X.; Liu, X.; Wang, S. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures. J. Anal. Appl. Pyrolysis 2017, 127, 350–359. [Google Scholar] [CrossRef]
- Emma, M. Black is the new green. Nature 2006, 442, 624–626. [Google Scholar]
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar production and applications in agro and forestry systems: A review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Abhishek, K.; Sarswat, A.; Patel, M.; Singh, P.; Pittman, C.U. Biochar production and applications in soil fertility and carbon sequestration–a sustainable solution to crop-residue burning in India. RSC Adv. 2018, 8, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhang, Z.; Sun, Y.’; Yang, G. One-pot pyrolysis route to Fe− N-Doped carbon nanosheets with outstanding electrochemical performance as cathode materials for microbial fuel cell. J. Agric. Biol. Eng. 2020. [Google Scholar] [CrossRef]
- Gonçalves, S.P.c.C.; Strauss, M.; Martinez, D.S.f.T. The positive fate of biochar addition to soil in the degradation of PHBV-Silver nanoparticle composites. Environ. Sci. Technol. 2018, 52, 13845–13853. [Google Scholar] [CrossRef]
- You, Z.; Li, D. The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites. Mater. Lett. 2013, 112, 197–199. [Google Scholar] [CrossRef]
- Li, S.; Huang, A.; Chen, Y.-J.; Li, D.; Turng, L.-S. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding. Compos. Part B Eng. 2018, 153, 277–284. [Google Scholar] [CrossRef]
- Giorcelli, M.; Savi, P.; Khan, A.; Tagliaferro, A. Analysis of biochar with different pyrolysis temperatures used as filler in epoxy resin composites. Biomass Bioenergy 2019, 122, 466–471. [Google Scholar] [CrossRef]
- Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rovere, M.; Tagliaferro, A. A Review of Non-Soil Biochar Applications. Materials 2020, 13, 261. [Google Scholar] [CrossRef] [Green Version]
- Summerscales, J.; Dissanayake, N.P.; Virk, A.S.; Hall, W. A review of bast fibres and their composites. Part 1–Fibres as reinforcements. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- Gezahegn, S.; Lai, R.; Huang, L.; Chen, L.; Huang, F.; Blozowski, N.; Thomas, S.C.; Sain, M.; Tjong, J.; Jaffer, S. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites. Sci. Total Environ. 2019, 664, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Khan, M.U.; Lin, X.; Cai, H.; Lei, H. Temperature varied biochar as a reinforcing filler for high-density polyethylene composites. Compos. Part B Eng. 2019, 175, 107151. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K.; Bhattacharyya, D. Biocomposites from waste derived biochars: Mechanical, thermal, chemical, and morphological properties. Waste Manag. (Oxford) 2016, 49, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yi, W.; Li, Z.; Wang, L.; Cai, H. Mechanical properties of rice husk biochar reinforced high density polyethylene composites. Polymers 2018, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Giorcelli, M.; Khan, A.; Pugno, N.M.; Rosso, C.; Tagliaferro, A. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties. Biomass Bioenergy 2019, 120, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, H.; Chen, C.; Li, X.; Deng, Q.; Li, D. Mechanical, electrical, and thermal properties of highly filled bamboo charcoal/ultra-high molecular weight polyethylene composites. Polym. Compos. 2018, 39, E1858–E1866. [Google Scholar] [CrossRef]
- Ikram, S.; Das, O.; Bhattacharyya, D. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2016, 91, 177–188. [Google Scholar] [CrossRef]
- Ho, M.-P.; Lau, K.-T.; Wang, H.; Hui, D. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos. Part B Eng. 2015, 81, 14–25. [Google Scholar] [CrossRef]
- Bartoli, M.; Nasir, M.A.; Jagdale, P.; Passaglia, E.; Spiniello, R.; Rosso, C.; Giorcelli, M.; Rovere, M.; Tagliaferro, A. Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties. J. Compos. Mater. 2019, 54, 1863–1873. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, D.; Lu, W.; Khan, M.U.; Xu, H.; Yi, W.; Lei, H.; Huo, E.; Qian, M.; Zhao, Y. Production of high-density polyethylene biocomposites from rice husk biochar: Effects of varying pyrolysis temperature. Sci. Total Environ. 2020, 738, 139910. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, X.; Chen, C.; Wang, H.; Deng, Q.; Gong, M.; Li, D. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Compos. Sci. Technol. 2016, 132, 31–37. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, H.; Ren, X.; Kong, L.; Liu, J.; Jiang, X. The dynamic mechanical analysis of highly filled rice husk biochar/high-density polyethylene composites. Polymers 2017, 9, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulose, A.M.; Elnour, A.Y.; Anis, A.; Shaikh, H.; Al-Zahrani, S.; George, J.; Al-Wabel, M.I.; Usman, A.R.; Ok, Y.S.; Tsang, D.C. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics. Sci. Total Environ. 2018, 619, 311–318. [Google Scholar] [CrossRef]
- Mashouf Roudsari, G.; Mohanty, A.K.; Misra, M. A statistical approach to develop biocomposites from epoxy resin, poly (furfuryl alcohol), poly (propylene carbonate), and biochar. J. Appl. Polym. Sci. 2017, 134, 45307. [Google Scholar] [CrossRef]
- Giorcelli, M.; Bartoli, M. Development of coffee biochar filler for the production of electrical conductive reinforced plastic. Polymers 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, M.; Rosso, C.; Giorcelli, M.; Rovere, M.; Jagdale, P.; Tagliaferro, A.; Chae, M.; Bressler, D.C. Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites. J. Appl. Polym. Sci. 2019, 137, 48896. [Google Scholar] [CrossRef]
- Li, S.; Li, D. Electrically conductive charcoal powder/ultrahigh molecular weight polyethylene composites. Mater. Lett. 2014, 137, 409–412. [Google Scholar] [CrossRef]
- Ogunsona, E.O.; Misra, M.; Mohanty, A.K. Impact of interfacial adhesion on the microstructure and property variations of biocarbons reinforced nylon 6 biocomposites. Compos. Part A Appl. Sci. Manuf. 2017, 98, 32–44. [Google Scholar] [CrossRef]
- Conti, R.; Fabbri, D.; Vassura, I.; Ferroni, L. Comparison of chemical and physical indices of thermal stability of biochars from different biomass by analytical pyrolysis and thermogravimetry. J. Anal. Appl. Pyrolysis 2016, 122, 160–168. [Google Scholar] [CrossRef]
- Das, O.; Bhattacharyya, D.; Sarmah, A.K. Sustainable eco–composites obtained from waste derived biochar: A consideration in performance properties, production costs, and environmental impact. J. Clean. Prod. 2016, 129, 159–168. [Google Scholar] [CrossRef]
- Sgriccia, N.; Hawley, M. Thermal, morphological, and electrical characterization of microwave processed natural fiber composites. Compos. Sci. Technol. 2007, 67, 1986–1991. [Google Scholar] [CrossRef]
- Das, O.; Kim, N.K.; Kalamkarov, A.L.; Sarmah, A.K.; Bhattacharyya, D. Biochar to the rescue: Balancing the fire performance and mechanical properties of polypropylene composites. Polym. Degrad. Stab. 2017, 144, 485–496. [Google Scholar] [CrossRef]
- Chen, C.; Yan, X.; Xu, Y.; Yoza, B.A.; Wang, X.; Kou, Y.; Ye, H.; Wang, Q.; Li, Q.X. Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater. Sci. Total Environ. 2019, 651, 2631–2640. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, X.; Lei, J.; Li, Z.; Shen, K. Effect of different morphologies on the creep behavior of high-density polyethylene. RSC Adv. 2016, 6, 3470–3479. [Google Scholar] [CrossRef]
- Qian, S.; Tao, Y.; Ruan, Y.; Lopez, C.A.F.; Xu, L. Ultrafine bamboo-char as a new reinforcement in poly (lactic acid)/bamboo particle biocomposites: The effects on mechanical, thermal, and morphological properties. J. Mater. Res. 2018, 33, 3870–3879. [Google Scholar] [CrossRef]
- Qian, S.; Sheng, K.; Yao, W.; Yu, H. Poly (lactic acid) biocomposites reinforced with ultrafine bamboo-char: Morphology, mechanical, thermal, and water absorption properties. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Arrigo, R.; Bartoli, M.; Malucelli, G. Poly (lactic acid)–biochar biocomposites: Effect of processing and filler content on rheological, thermal, and mechanical properties. Polymers 2020, 12, 892. [Google Scholar] [CrossRef] [Green Version]
- Nan, N.; DeVallance, D.B.; Xie, X.; Wang, J. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites. J. Compos. Mater. 2016, 50, 1161–1168. [Google Scholar] [CrossRef]
- Noori, A.; Bartoli, M.; Frache, A.; Piatti, E.; Giorcelli, M.; Tagliaferro, A. Development of pressure-responsive polypropylene and biochar-based materials. Micromachines 2020, 11, 339. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, J.; Ling, P.; Zhang, X.; Xu, K.; He, L.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy 2020, 202, 117644. [Google Scholar] [CrossRef]
- Nan, N.; DeVallance, D.B. Development of poly (vinyl alcohol)/wood-derived biochar composites for use in pressure sensor applications. J. Mater. Sci. 2017, 52, 8247–8257. [Google Scholar] [CrossRef]
- Savi, P.; Yasir, M.; Bartoli, M.; Giorcelli, M.; Longo, M. Electrical and microwave characterization of thermal annealed sewage sludge derived biochar composites. Appl. Sci. 2020, 10, 1334. [Google Scholar] [CrossRef] [Green Version]
- Naeem, S.; Baheti, V.; Tunakova, V.; Militky, J.; Karthik, D.; Tomkova, B. Development of porous and electrically conductive activated carbon web for effective EMI shielding applications. Carbon 2017, 111, 439–447. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef]
- Novák, I.; Krupa, I.; Chodák, I. Analysis of correlation between percolation concentration and elongation at break in filled electroconductive epoxy-based adhesives. Eur. Polym. J. 2003, 39, 585–592. [Google Scholar] [CrossRef]
- Ahmetli, G.; Kocaman, S.; Ozaytekin, I.; Bozkurt, P. Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources. Polym. Compos. 2013, 34, 500–509. [Google Scholar] [CrossRef]
- Özaytekin, İ.; Kar, Y. Synthesis and properties of composites of oligoazomethine with char. J. Appl. Polym. Sci. 2012, 123, 815–823. [Google Scholar] [CrossRef]
Reactors | Advantages | Disadvantages | References |
---|---|---|---|
Fluidized bed reactor | Simple construction, operation and high efficiency of heat transfer | High operation cost | [34] |
Vacuum moving bed reactor | Short residence time | Lower transfer rate | [35] |
Auger reactor | Less complex and low cost | Lower liquid yield | [36] |
Rotating cone reactor | Using larger particles | Less effective scaling | [37] |
Down-tube reactor | High heat transfer rate and short residence time | Long heat transfer stroke | [38] |
Fixed bed reactor | Simple structure | Poor sealing | [39] |
Microwave reactor | Easy control and energy saving | Lower capacity | [40] |
Muffle furnace | Energy saving and simple construction | Lower capacity | [41] |
Biochars | Temperatures (°C) | Yield (%) | SBET (m2/g) | C | O | H | N | References |
---|---|---|---|---|---|---|---|---|
Corn straw biochar | 400 | 53.94 | 7.15 | 75.14 | 18.92 | 4.56 | 1.38 | [45] |
Wheat straw biochar | 500 | 28.3 | 7.4 | 76.4 | 19.5 | 3.4 | 0.7 | [46] |
Pine saw dust biochar | 550 | 431.91 | 59.19 | 20.73 | 3.97 | 0.51 | [47] | |
Rice husk biochar | 450 | 18.58 | 46.56 | 18.58 | 3.54 | 0.85 | [47] | |
Swine manure biochar | 500 | 40.9 | 33.8 | 14.1 | 2.39 | 2.23 | [48] | |
Tire biochar | 600 | 37.6 | 66.6 | 21.1 | 0.21 | 0.09 | [48] | |
Bamboo biochar | 600 | 181.05 | 82.92 | 5.03 | 2.19 | 0.49 | [49] | |
Grape marc biochar | 500 | 33.8 | 205 | 72.91 | 12.9 | 3.15 | 2.72 | [50] |
Palm kernel shell biochar | 750 | 31.15 | 394.53 | 78.95 | 18.27 | 1.79 | 1.00 | [51] |
Biochars | Polymers | Biochar Temperature (°C) | Biochar Loading (%) | Flexural Strength (MPa) | Flexural Modulus (GPa) | Tensile Strength (MPa) | Tensile Modulus (GPa) | References |
---|---|---|---|---|---|---|---|---|
Date palm biochar | PP | 900 | 15 | 34 | 1.36 | [74] | ||
Pine wood biochar | PP | 900 | 36 | 59 | 3.2 | 31 | 3.3 | [68] |
Maple tree biochar | EP | 1000 | 20 | 16 | 0.7 | [66] | ||
Rice husk biochar | HDPE | 600 | 50 | 34.95 | 1.76 | 26.25 | 1.87 | [44] |
Switchgrass biochar | PLA | 500 | 20 | 60 | 3.4 | 54 | 1.9 | [28] |
Switchgrass biochar | HDPE | 500 | 20 | 12 | 0.8 | 23 | 0.6 | [28] |
Nano bamboo biochar | UHMWPE | 1000 | 9 | 24.7 | 0.36 | [72] | ||
Pine wood biochar | PP | 900 | 30 | 59 | 3 | 29 | 3.48 | [31] |
Miscanthus biochar | PC/PFA/EP | 500 | 20 | 113 | 57.9 | 3.2 | [75] | |
Coffee biochar | EP | 1000 | 15 | 25 | 3.26 | [76] | ||
Wasted cotton biochar | EP | 400 | 5 | 23 | 1.6 | [77] | ||
Charcoal | UHMWPE | 500 | 70 | 102 | [78] | |||
Bamboo biochar | UHMWPE/LLDPE | 1100 | 80 | 28.4 | 1.18 | [58] | ||
Miscanthus biochar | Nylon 6 | 500 | 20 | 97 | 3.15 | [79] | ||
Bamboo biochar | PLA | 7.5 | 38.98 | 0.76 | 51 | 3.7 | [69] | |
Olive trunks biochar | EP | 400 | 15 | 17 | 1.4 | [70] | ||
Thuja occidentalis biochar | PP | 700 | 10 | 62 | 2.4 | 32.3 | 2.5 | [62] |
Samples | Biochar Loading (%) | Tm (°C) | Tc (°C) | Xc (%) | References |
---|---|---|---|---|---|
PP Date palm biochar added | 0 5 | 166.78 164.4 | 120.97 121.34 | 43.0 33.42 | [74] |
Nylon Miscanthus biochar added | 0 20 | 217.9 217.2 | 196.4 194.9 | 32.67 30.04 | [79] |
PLA Bamboo biochar added | 0 7.5 | 159.84 156.68 | 129.09 135.11 | 49.50 13.90 | [69] |
PLA Ultrafine bamboo-char added | 0 40 | 149.7 142.2 | 126.3 94.4 | 1.09 22.06 | [87] |
PLA Coffee biochar added | 0 2.5 | 169.5 168.3 | 102.5 96.9 | 13.9 23.3 | [88] |
PVA Hard wood biochar | 0 10 | 214.96 192.82 | 290.11 337.10 | 57.70 41.88 | [89] |
PP Tea leaves biochar added | 0 30 | 165 165 | 117 128 | 53 53 | [90] |
UHMWPE Bamboo biochar added | 0 80 | 135.1 132.8 | 119.6 122.8 | [67] | |
HDPE Poplar biochar added | 0 70 | 131 130 | 120 123 | [63] |
Composites Samples | Biochar Temperature (°C) | Biochar Loading (%) | Conductivity (S/cm) | References |
---|---|---|---|---|
Bamboo biochar/UHMWPE | 1000 | 7 | 1.1 × 10−2 | [72] |
Coffee biochar/EP | 600 | 5 | 2 | [76] |
Coffee biochar/EP | 1000 | 20 | 2.02 × 102 | [76] |
Pine biochar/UHMWPE | 1100 | 50 | 2 × 10−1 | [78] |
Plastic waste biochar/EP | 450 | 5 | 6.54 × 10−8 | [97] |
Pine cone biochar/EP | 450 | 25 | 6.07 × 10−3 | [97] |
Maple wood biochar/EP | 950 | 20 | 1.3 × 101 | [27] |
Apple biochar/UHMWPE | 700 | 70 | 1.7 × 10−3 | [29] |
Apple biochar/UHMWPE | 900 | 70 | 8.2 × 10−2 | [29] |
Miscanthus biochar/EP | 650 | 20 | 2 × 101 | [59] |
Miscanthus biochar/EP | 750 | 20 | 2.75 × 102 | [59] |
PET biochar/oligomers | 450 | 50 | 1 × 10−2 | [98] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Cai, H.; Yi, W.; Lei, H.; Liu, H.; Wang, W.; Ruan, R. Biocomposites from Organic Solid Wastes Derived Biochars: A Review. Materials 2020, 13, 3923. https://doi.org/10.3390/ma13183923
Zhang Q, Cai H, Yi W, Lei H, Liu H, Wang W, Ruan R. Biocomposites from Organic Solid Wastes Derived Biochars: A Review. Materials. 2020; 13(18):3923. https://doi.org/10.3390/ma13183923
Chicago/Turabian StyleZhang, Qingfa, Hongzhen Cai, Weiming Yi, Hanwu Lei, Haolu Liu, Weihong Wang, and Roger Ruan. 2020. "Biocomposites from Organic Solid Wastes Derived Biochars: A Review" Materials 13, no. 18: 3923. https://doi.org/10.3390/ma13183923
APA StyleZhang, Q., Cai, H., Yi, W., Lei, H., Liu, H., Wang, W., & Ruan, R. (2020). Biocomposites from Organic Solid Wastes Derived Biochars: A Review. Materials, 13(18), 3923. https://doi.org/10.3390/ma13183923