Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nano-HA Powders, Pure HA, and ZnO/HA Composites
2.2. Compression Strength Test
2.3. Characterization
3. Results and Discussion
3.1. Characteristics of Synthesized Nano-HA Powder
3.2. Characteristics of Pure HA and ZnO/HA Composite Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pramanik, S.; Agarwal, A.K.; Rai, K.; Garg, A. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 2007, 33, 419–426. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Kuo, C.S.; Li, Y.Y.; Huang, C.P. Polymer-assisted synthesis of hydroxyapatite nanoparticle. Mater. Sci. Eng. C 2009, 29, 819–822. [Google Scholar] [CrossRef]
- Catros, S.; Guillemot, F.; Lebraud, E.; Chanseau, C.; Perez, S.; Bareille, R.; Amédée, J.; Fricain, J.C. Physico-chemical and biological properties of an nano-hydroxyapatite powder synthesized at room temperature. Innov. Res. Biomed. Eng. 2010, 31, 226–233. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, J.; Yang, S.; Yu, Q. Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method. Mater Lett. 2011, 65, 572–574. [Google Scholar] [CrossRef]
- Ma, H.B.; Su, W.X.; Tai, Z.X.; Sun, D.F. Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chin. Sci. Bull. 2012, 57, 3051–3058. [Google Scholar] [CrossRef] [Green Version]
- Hye, L.K.; Gil, Y.J.; Jun, H.Y.; Han, J.S.; Park, Y.J.; Kim, D.G.; Zhang, M.; Kim, D.J. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C 2015, 54, 20–25. [Google Scholar]
- Gligorijević, B.J.; Vilotijević, M.; Šćepanović, M. Substrate preheating and structural properties of power plasma sprayed hydroxyapatite coatings. Ceram. Int. 2016, 42, 411–420. [Google Scholar] [CrossRef]
- Kolanthai, E.; Ganesan, K.; Epple, M.; Kalkura, N. Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application. Mater. Today Commun. 2016, 8, 31–40. [Google Scholar] [CrossRef]
- Salaheldin, T.A.; Mohammad, A.; Hassan, M.A.; El-Anadouli, B.E. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. J. Taiwan Inst. Chem. Eng. 2013, 45, 1571–1577. [Google Scholar]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef] [PubMed]
- Kweon, H.Y.; Lee, S.W.; Hahn, B.D.; Lee, Y.C.; Kim, S.G. Hydroxyapatite and Silk Combination-Coated Dental Implants Result in Superior Bone Formation in the Peri-Implant Area Compared with Hydroxyapatite and Collagen Combination-Coated Implants. J. Oral Maxillofac. Surg. 2014, 72, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, E.M.; Oliveira, F.J.; Silva, R.F.; Neto, M.A.; Fernandes, M.H.; Amaral, M.; Vallet-Regí, M.; Vila, M. Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 101, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Kambe, T.; Tsuji, T.; Hashimoto, A. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Am. Physiol. Soc. 2015, 95, 749–784. [Google Scholar] [CrossRef] [PubMed]
- Bakopoulou, A.; Papachristou, E.; Bousnaki, M.; Hadjichristou, C.; Kontonasaki, E.; Theocharidou, A.; Papadopoulou, L.; Kantiranis, N.; Zachariadis, G.; Leyhausen, G.; et al. Human treated dentin matrices combined with Zn-doped, Mg-based bioceramic scaffolds and human dental pulp stem cells towards targeted dentin regeneration. Dent. Mater. 2016, 32, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.K.; Shrestha, S.; Tiwari, A.P.; Kim, J.I.; Ko, S.W.; Kim, H.J.; Park, C.H.; Kim, C.S. Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering. Mater. Des. 2017, 133, 69–81. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Beyene, Z.; Ghosh, R. Effect of zinc oxide addition on antimicrobial and antibiofilm activity of hydroxyapatite: A potential nanocomposite for biomedical applications. Mater. Today Commun. 2019, 21, 100612. [Google Scholar] [CrossRef]
- Ding, M.; Sahebgharani, N.; Musharavati, F.; Jaber, F.; Zalnezhad, E.; Yoon, G.H. Synthesis and properties of HA/ZnO/CNT nanocomposite. Ceram. Int. 2018, 44, 7746–7753. [Google Scholar] [CrossRef]
- Kannan, S.; Ventura, J.M.G.; Ferreira, J.M.F. Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalcium phosphate mixtures. Ceram. Int. 2007, 33, 1489–1494. [Google Scholar] [CrossRef]
- Raynaud, S.; Champion, E.; Bernache Assollant, D.; Thomas, P. Calcium phosphate apatites with ariable Ca/P atomic ratio I. Synthesis. characterisation and thermal stability of powders. Biomaterials 2002, 23, 1065–1072. [Google Scholar] [CrossRef]
- He, Z.; Ma, J.; Wang, C. Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics. Biomaterials 2005, 26, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Gezaz, M.S.; Aref, S.M.; Khatamian, M. Investigation of structural properties of hydroxyapatite/zinc oxide nanocomposites: An alternative candidate for replacement in recovery of bones in load-tolerating areas. Mater. Chem. Phys. 2019, 226, 169–176. [Google Scholar] [CrossRef]
- Jarzqbek, D.M. The impact of weak interfacial bonding strength on mechanical properties of metal matrix—Ceramic reinforced composites. Compos. Struct. 2018, 201, 352–362. [Google Scholar] [CrossRef]
Equipment | Product Model | Manufacturer |
---|---|---|
Analytical balance | FA2004 | Shanghai Tianping instrument Factory, Shanghai, China |
Electric mixer | JJ-1 | Jiangsu Jintan Jincheng Guosheng Experimental Instrument Factory, Changzhou, China |
Constant temperature drying oven | 101A-2 | Shanghai Experimental Instrument General Factory, Shanghai, China |
Constant temperature water bath | DK-98-IIA | Tianjin Tester Instrument Co. LTD, Tianjin, China |
Mixer | 4 Tank Mixer | MTI corporation |
Powder compressing machine | ZHY-601B | Beijing Zhonghe Venture Technology Development Co. LTD, Beijing, China |
Hydroextractor | LD5-A | Beijing Medical centrifuge Plant, Beijing, China |
Resistance furnace | SX2-5-12G | Jinan Precision Science instrument Co. LTD, Jinan, China |
Experimental Group | Mass Fraction/wt.% | Prefabricated Pressure (MPa) | Sintering Temperature (°C) | Sintering Time (h) | |
---|---|---|---|---|---|
HA | Zn | ||||
1 | Bal. | 0 | 150 | 850 | 2 |
2 | Bal. | 0 | 150 | 950 | 2 |
3 | Bal. | 0, 10, 20, 30 | 150 | 1050 | 2 |
4 | Bal. | 0, 10, 20, 30 | 150 | 1100 | 2 |
5 | Bal. | 0, 10, 20, 30 | 150 | 1150 | 2 |
6 | Bal. | 0, 10, 20, 30 | 150 | 1200 | 2 |
7 | Bal. | 0, 10, 20, 30 | 150 | 1250 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Ma, Y.; Li, X.; Ma, Z.; Yang, H.; Mu, L. Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO. Materials 2020, 13, 3948. https://doi.org/10.3390/ma13183948
Yuan S, Ma Y, Li X, Ma Z, Yang H, Mu L. Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO. Materials. 2020; 13(18):3948. https://doi.org/10.3390/ma13183948
Chicago/Turabian StyleYuan, Shidan, Ye Ma, Xingyi Li, Zhen Ma, Hui Yang, and Liting Mu. 2020. "Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO" Materials 13, no. 18: 3948. https://doi.org/10.3390/ma13183948
APA StyleYuan, S., Ma, Y., Li, X., Ma, Z., Yang, H., & Mu, L. (2020). Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO. Materials, 13(18), 3948. https://doi.org/10.3390/ma13183948