Water Interactions in Hybrid Polyacrylate-Silicate Hydrogel Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- –
- Sodium water glass R-150 (WG; 29.1 wt.% of SiO2 and 14.70 wt.% of Na2O; silicate modulus M = 2.10; “Rudniki” Chemical Plant, Rudniki, Poland);
- –
- 20 wt.% aqueous solution of sodium acrylate (ANa) synthesized in laboratory with the use of the saturated solution of sodium hydroxide (NaOH, Stanlab SJ, Lublin, Poland) and acrylic acid (AA; Acros Organics, Geel, Belgium);
- –
- Potassium persulphate (KPS; POCh LLC, Geel, Poland);
- –
- Sodium thiosulphate (NTS; POCh LLC, Gliwice, Poland);
- –
- N,N′-methylenebisacrylamide (NNMBA; Acros Organics, Geel, Belgium).
2.2. Synthesis of Cross-Linked Polymer-Silicate Hydrogels
2.3. Methods
3. Results and Discussion
3.1. TG/DSC Analysis of Polymer-Silicate Hydrogels
3.2. MIR Analysis of the Polymer-Silicate Hydrogels Structures
3.3. Mobility of Water in a Polymer-Silicate Hydrogel by Means of 1H Low Field NMR
3.3.1. T1, T2 Relaxation Time Measurements
- –
- Bulk water;
- –
- Water dipoles bound by Coulomb forces in the hydrated double layer around sodium cations [56];
- –
- Some protons chemically bonded to the silica backbone in the form of silanols (SiOH);
- –
- Water molecules absorbed on the silica surface and surrounding negatively ionized silica particles, forming a hydrated shell [57];
- –
- Hydrogen and carbon atoms forming the acrylate structure (C–H, C–H2).
3.3.2. D Diffusion Coefficient Measurements
3.4. Viscoelastic Properties of the Polymer-Silicate Hydrogels
3.5. SEM Analysis of the Polymer-Silicate Hydrogels
4. Conclusions
- –
- Polymerization of the mixture of sodium water glass and sodium acrylate in the presence of the NTS/KPS redox initiator system and NNMBA cross-linking monomer results in the formation of a hybrid structure with a porous polyacrylate scaffolding filled with a solution of silicate derivatives;
- –
- In the resulting hybrid structure, water is more strongly bonded through intermolecular interactions with both the polymer scaffolding and silicate structures, and because of that can evaporate at higher temperatures, even at 180 °C;
- –
- Although the alkaline environment accelerates the polymerization process, it also weakens the structure of the resulting hydrogel with the increased content of water glass. It can be explained by the reduction in the degree of polymer chain termination caused by the repulsion of polyions with the same charge;
- –
- The mobility of water molecules decreases as the amount of water glass in the mixture increases, which contradicts visual observation;
- –
- Averaging the value of relaxation times and diffusion coefficients indicates a rapid exchange (diffusional coupling) between both the pores of the acrylate as well as the hydration layers around sodium ions and silica particles. The exception is the signal recorded due to the heteronuclear dipolar couplings of C–H dipoles contained in the acrylate backbone, which indicates the absence or very slow exchange with other proton centers;
- –
- It is possible to synthesize stable silicate-polymer hydrogels at high pH, where, by adding the sodium water glass, the water capacity of the hydrogel can be controlled, as well as relaxation time what is useful when designing medical phantoms.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kudo, K.; Ishida, J.; Syuu, G.; Sekine, Y.; Ikeda-Fukazawa, T. Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration. J. Chem. Phys. 2014, 140. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monleon Pradas, M.; Gomez Ribelles, J.L.; Serrano Aroca, A.; Gallego Ferrer, G.; Suay Anton, J.; Pissis, P. Interaction between water and polymer chains in poly(hydroxyethyl acrylate) hydrogels. Colloid Polym. Sci. 2001, 279, 323–330. [Google Scholar] [CrossRef]
- Dhanjai; Sinha, A.; Kalambate, P.K.; Mugo, S.M.; Kamau, P.; Chen, J.; Jain, R. Polymer hydrogel interfaces in electrochemical sensing strategies: A review. TrAC Trend. Anal. Chem. 2019, 118, 488–501. [Google Scholar] [CrossRef]
- Hennink, W.E.; Van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236. [Google Scholar] [CrossRef]
- Ostrowska-Czubenko, J.; Gierszewska-Drużyńska, M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr. Polym. 2009, 77, 590–598. [Google Scholar] [CrossRef]
- Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm. 2020, 573, 118803. [Google Scholar] [CrossRef]
- Sekinea, Y.; Ikeda-Fukazawa, T. Structural changes of water in hydrogel during dehydration. J. Chem. Phys. 2009, 130. [Google Scholar] [CrossRef]
- Ostrowska-Czubenko, J.; Pieróg, M.; Gierszewska-Drużyńska, M. State of water in noncrosslinked and crosslinked hydrogel chitosan membranes—DSC studies. Prog. Chem. Appl. Chitin Deriv. 2011, 16, 147–156. [Google Scholar]
- Kyritsis, A.; Pissis, P.; Gomez Ribelles, J.L.; Monleon Pradas, M. Polymer-water interactions in poly(hydroxyethy1 acrylate) hydrogels studied by dielectric, calorimetric and sorption isotherm measurements. Polym. Gels Netw. 1995, 3, 445–469. [Google Scholar] [CrossRef]
- Naohara, R.; Narita, K.; Ikeda-Fukazawa, T. Change in hydrogen bonding structures of a hydrogel with dehydration. Chem. Phys. Lett. 2017, 670, 84–88. [Google Scholar] [CrossRef]
- Lia, W.; Xuea, F.; Cheng, R. States of water in partially swollen poly(vinyl alcohol) hydrogels. Polymer 2005, 46, 12026–12031. [Google Scholar] [CrossRef]
- Baumgartner, S.; Lahajnar, G.; Sepe, A.; Krist, J. Investigation of the State and Dynamics of Water in Hydrogels of Cellulose Ethers by 1H NMR Spectroscopy. AAPS PharmSciTech 2002, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Numata, K.; Katashima, T.; Sakai, T. State of Water, Molecular Structure, and Cytotoxicity of Silk Hydrogels. Biomacromolecules 2011, 12, 2137–2144. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Muller-Plathe, F. Different States of Water in Hydrogels? Macromolecules 1998, 31, 6721–6723. [Google Scholar] [CrossRef]
- Tanaka, M.; Mochizuki, A. Effect of water structure on blood compatibility—Thermal analysis of water in poly(meth)acrylate. J. Biomed. Mater. Res. A 2004, 68, 684–695. [Google Scholar] [CrossRef]
- Falk, M.; Ford, T.A. Infrared Spectrum and Structure of Liquid Water. Can. J. Chem. 1966, 44, 1699–1707. [Google Scholar] [CrossRef]
- Gun’ko, V.M.; Savina, I.N.; Mikhalovsky, S.V. Properties of water bound in hydrogels. Gels 2017, 3, 37. [Google Scholar] [CrossRef]
- Liu, G.; Gu, Z.; Hong, Y.; Wei, H.; Zhang, C.; Huang, S.; Chen, Y.; Lu, Y.; Li, Y. Effects of molecular interactions in debranched high amylose starch on digestibility and hydrogel properties. Food Hydrocoll. 2020, 101, 105498. [Google Scholar] [CrossRef]
- Cacopardo, L.; Guazzelli, N.; Nossa, R.; Mattei, G.; Ahluwalia, A. Engineering hydrogel viscoelasticity. J. Mech. Behav. Biomed. 2019, 89, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Tognonvi, M.; Rossignol, S.; Bonnet, J.-P. Physical-chemistry of sodium silicate gelation in an alkaline medium. J. Sol.-Gel Sci. Technol. 2011, 58, 625–635. [Google Scholar] [CrossRef]
- Dimas, D.; Giannopoulou, I.; Panias, D. Polymerization in sodium silicate solutions: A fundamental process in geopolymerization technology. J. Mater. Sci. 2009, 44, 3719–3730. [Google Scholar] [CrossRef]
- Baliński, A. The Influence of Silica Module of the Soluble Sodium Silicate Hardened by Ester on the Residual Strenght of Molding Sand. Arch. Foundry Eng. 2013, 13, 131–133. [Google Scholar] [CrossRef]
- Stachowicz, M. The role of the densification of moulding sands with inorganic binders in the modeling of their strength obtained after microwave hardening. Trans. Foundry Res. Ins. 2017, 57, 103–113. [Google Scholar] [CrossRef]
- Holzer, M.; Bilska, M.; Baliński, A. Application of FTIR spectroscopy in examinations of structure of water glass and the process of its hardening with liquid ester. Odlewnictwo-Nauka i Praktyka 2004, 2, 15–25. [Google Scholar]
- Pereyra, A.M.; Giudice, C.A. Flame-retardant impregnants for woods based on alkaline silicates. Fire Saf. J. 2009, 44, 497–503. [Google Scholar] [CrossRef]
- Jelinek, P. Vytvrzovaci procesy smesi s alkalickymi silikaty. In Proceedings of the International Conference—Ecological Production of Castings in the Waterglass Mixtures, Zlin, Czech Republic, 7–10 May 1998; pp. 99–102. [Google Scholar]
- Jansson, H.; Bernin, D.; Ramser, K. Silicate species of water glass and insights for alkali-activated green cement. AIP Adv. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Furukawa, T.; Fox, K.E.; White, W.B. Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses. J. Chem. Phys. 1981, 75, 3226–3237. [Google Scholar] [CrossRef]
- Huang, C.; Cormack, A.N. The structure of sodium silicate glass. J. Chem. Phys. 1990, 93, 8180–8186. [Google Scholar] [CrossRef]
- Davies, K.M.; Tomozawa, M. An infrared spectroscopic study of water-related species in silica glasses. J. Non-Cryst. Solids 1996, 201, 177–198. [Google Scholar] [CrossRef]
- Palmese, L.L.; Thapa, R.K.; O Sullivan, M.; Kiick, K.L. Hybrid hydrogels for biomedical applications. Curr. Opin. Chem. Eng. 2019, 24, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zhang, C.; Wang, M.; Wu, Y.; Gao, C.; Zhu, P. Injectable pH-responsive poly (γ-glutamic acid)-silica hybrid hydrogels with high mechanical strength, conductivity and cytocompatibility for biomedical applications. Polymer 2020, 197, 122489. [Google Scholar] [CrossRef]
- Bortel, E. Synthetic water-soluble polymers. In Handbook of Thermoplastics; Olabisi, O., Ed.; Marcel Dekker: New York, NY, USA, 1997; pp. 291–329. [Google Scholar]
- Blauer, G. Polymerization of methacrylic acid at pH 4 to 11. Trans. Faraday Soc. 1960, 56, 606–612. [Google Scholar] [CrossRef]
- Mori, H.; Muller, A.H.E. New polymeric architectures with (meth)acrylic acid segments. Prog. Polym. Sci. 2003, 28, 1403–1439. [Google Scholar] [CrossRef]
- Mayoux, C.; Dandurand, J.; Ricard, A.; Lacabanne, C. Inverse suspension polymerization of sodium acrylate: Synthesis and characterization. J. App. Polym. Sci. 2000, 77. [Google Scholar] [CrossRef]
- Cooper, C.L.; Cosgrove, T.; van Duijneveldt, J.S.; Murrayb, M.; Prescott, S.W. The use of solvent relaxation NMR to study colloidal suspensions. Soft Matter 2013, 9, 7211–7228. [Google Scholar] [CrossRef]
- Woessner, D.E.; Zimmerman, J.R. Nuclear Transfer and Anisotropic Motional Spin Phenomena: Relaxation Time Temperature Dependence Studies of Water Adsorbed on Silica Gel. IV. J. Phys. Chem. 1963, 67, 1590–1600. [Google Scholar] [CrossRef]
- Krzyżak, A.; Habina, I. Low field 1H NMR characterization of mesoporous silica MCM-41 and SBA-15 filled with different amount of water. Microporous Mesoporous Mater. 2016, 231, 230–239. [Google Scholar] [CrossRef]
- Mastalska-Popławska, J.; Izak, P.; Wójcik, Ł.; Stempkowska, A.; Góral, Z.; Krzyżak, A.; Habina, I. Synthesis and characterization of cross-linked poly(sodium acrylate)/sodium silicate hydrogels. Polym. Eng. Sci. 2019, 56, 1279–1287. [Google Scholar] [CrossRef]
- Mastalska-Popławska, J.; Izak, P.; Wójcik, Ł.; Stempkowska, A. Rheology of Cross-Linked Poly(Sodium Acrylate)/Sodium Silicate Hydrogels. Arab. J. Sci. Eng. 2016, 41, 2221–2228. [Google Scholar] [CrossRef] [Green Version]
- Rabek, J.F. Contemporary Knowledge about Polymers, 1st ed.; PWN: Warsaw, Poland, 2009. [Google Scholar]
- Grabowska, B.; Kaczmarska, K.; Bobrowski, A.; Szymankowska-Kumon, S.; Kurleto-Kozioł, Ż. TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS Studies of Thermal Decomposition for Poly(sodium acrylate)/Dextrin (PAANa/D)—New Binder BioCo3. J. Cast. Mater. Eng. 2017, 1, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Falcone, J.S.; Bass, J.L.; Krumrine, P.H.; Brensinger, K.; Schenk, E.R. Characterizing the Infrared Bands of Aqueous Soluble Silicates. J. Phys. Chem. A 2010, 114, 2438–2446. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.-J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef]
- Tsuchiya, I. Infrared spectroscopic study of hydroxyl groups on silica surfaces. J. Phys. Chem. 1982, 86, 4107–4112. [Google Scholar] [CrossRef]
- Grabowska, B.; Holtzer, M. Structural examination of the cross-linking reaction mechanism of polyacrylate binding agents. Arch. Metall. Mater. 2009, 54, 427–437. [Google Scholar]
- Cavus, S.; Gurdag, G.; Sozgen, K.; Gurkayanak, M.A. The preparation and characterization of poly(acrylic acid-co-methacrylamide) gel and its use in the non-competetive heavy metal removal. Polym. Adv. Technol. 2009, 20, 165–172. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Bhowmick, A.K.; De Sarkar, M. Synthesis and characterization of acrylic rubber/silica hybrid composites prepared by sol-gel technique. J. App. Polym. Sci. 2004, 93, 2579–2589. [Google Scholar] [CrossRef]
- Shi, X.; Xu, S.; Lin, J.; Feng, S.; Wang, J. Synthesis of SiO2- polyacrylic acid hybrid hydrogel with high mechanical properties and salt tolerance using sodium silicate precursor through sol–gel process. Mater. Lett. 2009, 63, 527–529. [Google Scholar] [CrossRef]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef]
- Abragam, A. The Principles of Nuclear Magnetism, 1st ed.; Clarendon Press: Oxford, UK, 1961. [Google Scholar]
- Bernheim, R.A.; Brown, T.H.; Gutowsky, H.S.; Woessner, D.E. Temperature dependence of proton relaxation times in aqueous solutions of paramagnetic ions. J. Chem. Phys. 1959, 30, 950–956. [Google Scholar] [CrossRef]
- Hertz, H.G. Microdynamic behaviour of liquids as studied by NMR relaxation times. Prog. Nucl. Magn. Reson. Spectrosc. 1967, 3, 159–230. [Google Scholar] [CrossRef]
- Roose, P.; Van Craen, J.; Andriessens, G.; Eisendrath, H. NMR Study of Spin–Lattice Relaxation of Water Protons by Mn2+ Adsorbed onto Colloidal Silica. J. Magn. Res. Ser. A 1996, 120, 206–213. [Google Scholar] [CrossRef]
- Roose, P.; Van Craen, J.; Finsy, R.; Eisendrath, H. Field-cycling proton nuclear magnetic relaxation-dispersion study of aqueous colloidal silica sols. J. Magn. Reson. A 1995, 115, 20–25. [Google Scholar] [CrossRef]
- Kuemmerlen, J.; Merwin, L.H.; Sebald, A.; Keppler, H. Structural role of water in sodium silicate glasses: Results from silicon-29 and proton NMR spectroscopy. J. Phys. Chem. 1992, 96, 6405–6410. [Google Scholar] [CrossRef]
- Krzyżak, A.; Mazur, W.; Matyszkiewicz, J.; Kochamn, A. Identification of Proton Populations in Cherts as Natural Analogues of Pure Silica Materials by Means of Low Field NMR. J. Phys. Chem. C 2020, 124, 5225–5240. [Google Scholar] [CrossRef]
- Lalowicz, Z.T.; Birczyński, A.; Krzyżak, A.T. Translational and Rotational Dynamics of molecules confined in zeolite nanocages by means of deuteron NMR. J. Phys. Chem. C 2017, 121, 26472–26482. [Google Scholar] [CrossRef]
- Schrader, B. (Ed.) Infrared and Raman Spectroscopy: Methods and Applications, 1st ed.; VCH: Weinheim, Germany, 1995. [Google Scholar]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Griffiths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectrometry, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Joni, I.M.; Nulhakim, L.; Vanitha, M.; Panatarani, C. Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor. J. Phys. Conf. Ser. 2018, 1080, 1–6. [Google Scholar] [CrossRef]
- Yang, X.; Roonasi, P.; Holmgren, A. A study of sodium silicate in aqueous solution and sorbed by synthetic magnetite using in situ ATR-FTIR spectroscopy. J. Colloid Interface Sci. 2008, 328, 41–47. [Google Scholar] [CrossRef]
- Handke, M.; Mozgawa, W. Model quasi-molecule Si2O as an approach in the IR spectra description glassy and crystalline framework silicates. J. Mol. Struct. 1995, 348, 341–344. [Google Scholar] [CrossRef]
- Sitarz, M.; Mozgawa, W.; Handke, M. Rings in the structure of silicate glasses. J. Mol. Struct. 1999, 511, 281–285. [Google Scholar] [CrossRef]
- Vishnevskiy, A.S.; Seregin, D.S.; Vorotilov, K.A.; Sigov, A.S.; Mogilnikov, K.P.; Baklanov, M.R. Effect of water content on the structural properties of porous methyl-modified silicate films. J. Sol.-Gel Sci. Tech. 2019, 92, 273–281. [Google Scholar] [CrossRef]
Sample Number | Mass Ratio of WG to pANa | WG [wt.%] | pANa [wt.%] | Ana [wt.%] | SiO2 [wt.%] | Na2O [wt.%] | H2O [wt.%] | H2O(p) * [wt.%] | H2O(wg) ** [wt.%] | Sample Form |
---|---|---|---|---|---|---|---|---|---|---|
1 | SW R-150 | 100.00 | - | - | 29.10 | 14.70 | 56.20 | - | 56.20 | liquid-like |
2 | pANa | - | 100.00 | 20.00 | - | - | 80.00 | 80.00 | - | solid-like |
3 | 1:1 | 50.00 | 50.00 | 10.00 | 14.53 | 7.37 | 68.10 | 40.00 | 28.10 | solid-like |
4 | 1:2 | 33.33 | 66.67 | 13.33 | 9.70 | 4.90 | 72.07 | 53.33 | 18.73 | solid-like |
5 | 1:3 | 25.00 | 75.00 | 15.00 | 7.27 | 3.67 | 74.07 | 60.00 | 14.07 | solid-like |
6 | 1:4 | 20.00 | 80.00 | 16.00 | 5.83 | 2.93 | 75.23 | 64.00 | 11.23 | solid-like |
7 | 1:6 | 14.30 | 85.70 | 17.13 | 4.17 | 2.10 | 76.60 | 68.57 | 8.03 | solid-like |
8 | 1:7 | 12.50 | 87.50 | 17.50 | 3.63 | 1.83 | 77.03 | 30.00 | 7.03 | solid-like |
9 | 2:1 | 66.67 | 33.33 | 6.67 | 19.40 | 9.80 | 64.13 | 26.67 | 37.47 | liquid-like |
10 | 3:1 | 75.00 | 25.00 | 5.00 | 21.83 | 11.03 | 62.13 | 20.00 | 42.13 | liquid-like |
11 | 4:1 | 80.00 | 20.00 | 4.00 | 23.27 | 11.77 | 60.97 | 16.00 | 44.97 | liquid-like |
12 | 6:1 | 85.70 | 14.30 | 2.87 | 24.93 | 12.60 | 59.60 | 11.43 | 48.17 | liquid-like |
13 | 7:1 | 87.50 | 12.50 | 2.50 | 25.47 | 12.87 | 59.17 | 10.00 | 49.17 | liquid-like |
Sample Symbol | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 13.45 | 7.1 | 12.65 | 12.49 | 12.35 | 12.31 | 12.24 | 12.17 | 12.65 | 12.61 | 12.71 | 12.73 | 12.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastalska-Popławska, J.; Stempkowska, A.; Habina-Skrzyniarz, I.; Krzyżak, A.T.; Rutkowski, P.; Izak, P.; Rudny, J.; Gawenda, T. Water Interactions in Hybrid Polyacrylate-Silicate Hydrogel Systems. Materials 2020, 13, 4092. https://doi.org/10.3390/ma13184092
Mastalska-Popławska J, Stempkowska A, Habina-Skrzyniarz I, Krzyżak AT, Rutkowski P, Izak P, Rudny J, Gawenda T. Water Interactions in Hybrid Polyacrylate-Silicate Hydrogel Systems. Materials. 2020; 13(18):4092. https://doi.org/10.3390/ma13184092
Chicago/Turabian StyleMastalska-Popławska, Joanna, Agata Stempkowska, Iwona Habina-Skrzyniarz, Artur T. Krzyżak, Paweł Rutkowski, Piotr Izak, Jakub Rudny, and Tomasz Gawenda. 2020. "Water Interactions in Hybrid Polyacrylate-Silicate Hydrogel Systems" Materials 13, no. 18: 4092. https://doi.org/10.3390/ma13184092
APA StyleMastalska-Popławska, J., Stempkowska, A., Habina-Skrzyniarz, I., Krzyżak, A. T., Rutkowski, P., Izak, P., Rudny, J., & Gawenda, T. (2020). Water Interactions in Hybrid Polyacrylate-Silicate Hydrogel Systems. Materials, 13(18), 4092. https://doi.org/10.3390/ma13184092