Design of Paracetamol Delivery Systems Based on Functionalized Ordered Mesoporous Carbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Mesoporous Carbon Carriers via Hard Template Method
2.2. Preparation of Mesoporous Carbon Carriers via Soft Template Method
2.3. Functionalization of Mesoporous Carbon Carriers
2.4. Characterization of Materials
2.4.1. Low-Temperature Nitrogen Sorption
2.4.2. Powder X-ray Diffraction
2.4.3. Surface Oxygen Functional Groups
2.4.4. Infrared Spectroscopy
2.5. Paracetamol Adsorption Studies
2.6. Paracetamol Release Studies
2.7. Permeability Study
3. Results and Discussion
3.1. Physicochemical Characterization of Mesoporous Carbon Carriers
3.2. Paracetamol Adsorption and Release Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009, 117, 1–9. [Google Scholar] [CrossRef]
- Vallet-Regi, M.; Ramila, A.; Del Real, R.P.; Pérez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater. 2001, 13, 308–311. [Google Scholar] [CrossRef]
- Luo, Z.; Fan, S.; Gu, C.; Liu, W.; Chen, J.; Li, B.; Liu, J. Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem. 2019, 26, 3341–3369. [Google Scholar] [CrossRef]
- Nkansah, P.; Antipas, A.; Lu, Y.; Varma, M.; Rotter, C.; Rago, B.; El-Kattan, A.; Taylor, G.; Rubio, M.; Litchfield, J. Development and evaluation of novel solid nanodispersion system for oral delivery of poorly water-soluble drugs. J. Control. Release 2013, 169, 150–161. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A.; Pietrzak, R. In vitro release of L-phenylalanine from ordered mesoporous materials. Microporous Mesoporous Mater. 2013, 177, 32–36. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A.; Nowak, I.; Marciniak, M.; Pietrzak, R. Ordered mesoporous silica modified with lanthanum for ibuprofen loading and release behaviour. Eur. J. Pharm. Biopharm. 2015, 94, 550–558. [Google Scholar] [CrossRef]
- Saha, D.; Warren, K.E.; Naskar, A.K. Controlled release of antipyrine from mesoporous carbons. Microporous Mesoporous Mater. 2014, 196, 327–334. [Google Scholar] [CrossRef]
- Saha, D.; Moken, T.; Chen, J.; Hensley, D.K.; Delaney, K.; Hunt, M.A.; Nelson, K.; Spurri, A.; Benham, L.; Brice, R. Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin. RSC Adv. 2015, 5, 23699–23707. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: A conventional platform with new promise. J. Mater. Chem. B 2018, 6, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Abánades Lázaro, I.; Forgan, R.S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 2019, 380, 230–259. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Li, Z.; Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chemie Int. Ed. 2008, 47, 3696–3717. [Google Scholar] [CrossRef]
- Ryoo, R.; Joo, S.H.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677–681. [Google Scholar] [CrossRef]
- Jun, S.; Joo, S.H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 2000, 122, 10712–10713. [Google Scholar] [CrossRef]
- Ma, X.; Yuan, H.; Hu, M. A simple method for synthesis of ordered mesoporous carbon. Diam. Relat. Mater. 2019, 98, 107480. [Google Scholar] [CrossRef]
- Carboni, M.; Abney, C.W.; Taylor-Pashow, K.M.L.; Vivero-Escoto, J.L.; Lin, W. Uranium sorption with functionalized mesoporous carbon materials. Ind. Eng. Chem. Res. 2013, 52, 15187–15197. [Google Scholar] [CrossRef]
- Jun, S.; Choi, M.; Ryu, S.; Lee, H.-Y.; Ryoo, R. Ordered mesoporous carbon molecular sieves with functionalized surfaces. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2003; Volume 146, pp. 37–40. ISBN 0167-2991. [Google Scholar]
- Goscianska, J.; Malaika, A. A facile post-synthetic modification of ordered mesoporous carbon to get efficient catalysts for the formation of acetins. Catal. Today 2019, in press. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Liu, C.; Yuan, P.; Lin, Z.; Yang, J.; Yue, Y.; Bai, Z.; Wang, T.; Bao, X. Synthesis, modification, and application of hollow mesoporous carbon submicrospheres for adsorptive desulfurization. Ind. Eng. Chem. Res. 2018, 57, 15020–15030. [Google Scholar] [CrossRef]
- Jeong, Y.; Cui, M.; Choi, J.; Lee, Y.; Kim, J.; Son, Y.; Khim, J. Development of modified mesoporous carbon (CMK-3) for improved adsorption of bisphenol-A. Chemosphere 2020, 238, 124559. [Google Scholar] [CrossRef]
- Nazir, A.; Yu, H.; Wang, L.; Haroon, M.; Ullah, R.S.; Fahad, S.; Elshaarani, T.; Khan, A.; Usman, M. Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 2018, 53, 8699–8719. [Google Scholar] [CrossRef]
- Marciniak, M.; Goscianska, J.; Pietrzak, R. Physicochemical characterization of ordered mesoporous carbons functionalized by wet oxidation. J. Mater. Sci. 2018, 53, 5997–6007. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, P.; Muralidaran, Y.; Ragavan, G. Challenges in oral drug delivery: A nano-based strategy to overcome. In Nanostructures for Oral Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 173–201. [Google Scholar]
- Niu, X.; Wan, L.; Hou, Z.; Wang, T.; Sun, C.; Sun, J.; Zhao, P.; Jiang, T.; Wang, S. Mesoporous carbon as a novel drug carrier of fenofibrate for enhancement of the dissolution and oral bioavailability. Int. J. Pharm. 2013, 452, 382–389. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhi, Z.; Li, X.; Gao, J.; Song, Y. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol. Int. J. Pharm. 2013, 454, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhao, Q.; Sun, C.; Zhang, Z.; Jiang, T.; Sun, J.; Li, Y.; Wang, S. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability. Mater. Sci. Eng. C 2014, 39, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Jiang, H.; Jiang, T.; Zhi, Z.; Wu, C.; Sun, C.; Zhang, J.; Wang, S. Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy. Eur. J. Pharm. Sci. 2012, 45, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Upfal, J. The Australian Drug Guide: Every Person’s Guide to Prescription and Over-the-Counter Medicines, Street Drugs, Vaccines, Vitamins and Minerals; Black Inc.: Melbourne, Australia, 2006; ISBN 1863951741. [Google Scholar]
- Fusi-Schmidhauser, T.; Preston, N.J.; Keller, N.; Gamondi, C. Conservative management of Covid-19 patients—Emergency palliative care in action. J. Pain Symptom Manag. 2020, 60, e27–e30. [Google Scholar] [CrossRef]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Boehm, H.P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon N. Y. 1994, 32, 759–769. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem 1906, 57, 1100–1107. [Google Scholar]
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.-S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Goscianska, J.; Nowak, I.; Olejnik, A. Sorptive properties of aluminium ions containing mesoporous silica towards l-histidine. Adsorption 2016, 22, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Olejnik, A.; Nowak, I.; Schroeder, G. Functionalized polystyrene beads as carriers in release studies of two herbicides: 2, 4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid. Int. J. Environ. Sci. Technol. 2019, 16, 5623–5634. [Google Scholar] [CrossRef] [Green Version]
- Prior, A.; Frutos, P.; Correa, C.P. Comparison of dissolution profiles: Current guidelines. In Proceedings of the VI Congreso SEFIG, Granada, Spain, 9–11 February 2003; Volume 3, pp. 507–509. [Google Scholar]
- Fischer, H.; Kansy, M.; Avdeef, A.; Senner, F. Permeation of permanently positive charged molecules through artificial membranes—Influence of physico-chemical properties. Eur. J. Pharm. Sci. 2007, 31, 32–42. [Google Scholar] [CrossRef]
- Liang, D.; Lu, C.; Li, Y.L.; Li, Y.H. Adsorption of paracetamol by activated carbon and its release in vitro. Xinxing Tan Cailiao 2006, 21, 144–150. [Google Scholar]
- Bernal, V.; Erto, A.; Giraldo, L.; Moreno-Piraján, J.C. Effect of solution pH on the adsorption of paracetamol on chemically modified activated carbons. Molecules 2017, 22, 1032. [Google Scholar] [CrossRef]
- Goscianska, J.; Olejnik, A.; Nowak, I.; Marciniak, M.; Pietrzak, R. Stability analysis of functionalized mesoporous carbon materials in aqueous solution. Chem. Eng. J. 2016, 290, 209–219. [Google Scholar] [CrossRef]
- Milczewska, K.; Voelkel, A.; Zwolińska, J.; Jędro, D. Preparation of hybrid materials for controlled drug release. Drug Dev. Ind. Pharm. 2016, 42, 1058–1065. [Google Scholar] [CrossRef]
- Mallah, M.A.; Sherazi, S.T.H.; Bhanger, M.I.; Mahesar, S.A.; Bajeer, M.A. A rapid Fourier-transform infrared (FTIR) spectroscopic method for direct quantification of paracetamol content in solid pharmaceutical formulations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 141, 64–70. [Google Scholar] [CrossRef]
- Refat, M.S.; Mohamed, G.G.; El-Sayed, M.Y.; Killa, H.M.A.; Fetooh, H. Spectroscopic and thermal degradation behavior of Mg (II), Ca (II), Ba (II) and Sr (II) complexes with paracetamol drug. Arab. J. Chem. 2017, 10, S2376–S2387. [Google Scholar] [CrossRef] [Green Version]
- McCary, S.E.; Rybolt, T.R. Storage and timed release of acetaminophen from Porous carbonaceous materials. Open J. Phys. Chem. 2013, 3, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Ciesielczyk, F.; Goscianska, J.; Zdarta, J.; Jesionowski, T. The development of zirconia/silica hybrids for the adsorption and controlled release of active pharmaceutical ingredients. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 545, 39–50. [Google Scholar] [CrossRef]
- Gordon, J.; Kazemian, H.; Rohani, S. MIL-53 (Fe), MIL-101, and SBA-15 porous materials: Potential platforms for drug delivery. Mater. Sci. Eng. C 2015, 47, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Mellaerts, R.; Jammaer, J.A.G.; Van Speybroeck, M.; Chen, H.; Van Humbeeck, J.; Augustijns, P.; Van den Mooter, G.; Martens, J.A. Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: A case study with itraconazole and ibuprofen. Langmuir 2008, 24, 8651–8659. [Google Scholar] [CrossRef]
- López, T.; Álvarez, M.; Ramírez, P.; Jardón, G.; López, M.; Rodriguez, G.; Ortiz, I.; Novaro, O. Sol-gel silica matrix as reservoir for controlled release of paracetamol: Characterization and kinetic analysis. J. Encapsul. Adsorpt. Sci. 2016, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Miriyala, N.; Ouyang, D.; Perrie, Y.; Lowry, D.; Kirby, D.J. Activated carbon as a carrier for amorphous drug delivery: Effect of drug characteristics and carrier wettability. Eur. J. Pharm. Biopharm. 2017, 115, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Bermejo, M.; Avdeef, A.; Ruiz, A.; Nalda, R.; Ruell, J.A.; Tsinman, O.; González, I.; Fernández, C.; Sánchez, G.; Garrigues, T.M. PAMPA—A drug absorption in vitro model: 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. Eur. J. Pharm. Sci. 2004, 21, 429–441. [Google Scholar] [CrossRef]
f1 (Difference Factor) | f2 (Similarity Factor) | |
---|---|---|
Identical profiles | 0 | 100 |
Similar profiles | 0–15 | 50–100 |
Different profiles | >15 | <50 |
Material | BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) | Micropores Surface Area (m2/g) | Micropore Volume (cm3/g) |
---|---|---|---|---|---|
CKIT-6 | 1003 | 1.15 | 5.78 | 306 | 0.34 |
CKIT-6-APS | 656 | 0.89 | 5.49 | 252 | 0.26 |
CSBA-15 | 986 | 1.47 | 6.54 | 545 | 0.61 |
CSBA-15-APS | 689 | 0.95 | 5.49 | 380 | 0.44 |
CST | 526 | 0.49 | 4.12 | 231 | 0.14 |
CST-APS | 248 | 0.29 | 4.67 | 178 | 0.12 |
Material | qe(exp) (mg/g) | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
qe(cal) (mg/g) | k1 (min−1) | R2 | qe(cal)(mg/g) | k2 (g/mg·min) | R2 | ||
CST | 143 | 6.18 | 0.016 | 0.942 | 144 | 0.003 | 0.999 |
CST-APS | 159 | 9.94 | 0.019 | 0.939 | 161 | 0.003 | 0.999 |
CSBA15 | 171 | 7.35 | 0.018 | 0.927 | 172 | 0.004 | 0.999 |
CSBA-15-APS | 174 | 11.93 | 0.022 | 0.925 | 175 | 0.003 | 0.999 |
CKIT-6 | 174 | 11.44 | 0.026 | 0.987 | 175 | 0.003 | 0.999 |
CKIT-6-APS | 181 | 10.72 | 0.023 | 0.969 | 182 | 0.003 | 0.999 |
Material | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF (mg/g (L/mg)1/n) | 1/n | R2 | |
CST | 154 | 0.602 | 0.999 | 81 | 0.137 | 0.856 |
CST-APS | 196 | 0.369 | 0.999 | 102 | 0.137 | 0.856 |
CSBA15 | 250 | 0.727 | 0.999 | 120 | 0.170 | 0.799 |
CSBA-15-APS | 303 | 0.493 | 0.999 | 142 | 0.172 | 0.861 |
CKIT-6 | 270 | 0.787 | 0.999 | 128 | 0.178 | 0.801 |
CKIT-6-APS | 323 | 0.574 | 0.999 | 153 | 0.178 | 0.860 |
Material | Zero Order | First Order | Higuchi | Hixson–Crowell | Korsmeyer–Peppas | n |
---|---|---|---|---|---|---|
CSBA-15 | 0.935 | 0.951 | 0.989 | 0.946 | 0.939 | 0.972 |
CSBA-15-APS | 0.800 | 0.899 | 0.895 | 0.871 | 0.955 | 0.075 |
CKIT-6 | 0.667 | 0.647 | 0.969 | 0.629 | 0.737 | 0.197 |
CKIT-6-APS | 0.864 | 0.913 | 0.936 | 0.880 | 0.953 | 0.510 |
CST | 0.953 | 0.960 | 0.976 | 0.958 | 0.955 | 0.069 |
CsT-APS | 0.734 | 0.766 | 0.860 | 0.756 | 0.948 | 0.096 |
Systems | f1 | f2 |
---|---|---|
PAR + CKIT-6 | 72.8 | 7.2 |
PAR + CKIT-6-APS | 70.3 | 12.7 |
PAR + CSBA-15 | 86.6 | 3.5 |
PAR + CSBA-15-APS | 25.4 | 28.3 |
PAR + CST | 55.9 | 12.9 |
PAR + CsT-APS | 47.9 | 16.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goscianska, J.; Ejsmont, A.; Olejnik, A.; Ludowicz, D.; Stasiłowicz, A.; Cielecka-Piontek, J. Design of Paracetamol Delivery Systems Based on Functionalized Ordered Mesoporous Carbons. Materials 2020, 13, 4151. https://doi.org/10.3390/ma13184151
Goscianska J, Ejsmont A, Olejnik A, Ludowicz D, Stasiłowicz A, Cielecka-Piontek J. Design of Paracetamol Delivery Systems Based on Functionalized Ordered Mesoporous Carbons. Materials. 2020; 13(18):4151. https://doi.org/10.3390/ma13184151
Chicago/Turabian StyleGoscianska, Joanna, Aleksander Ejsmont, Anna Olejnik, Dominika Ludowicz, Anna Stasiłowicz, and Judyta Cielecka-Piontek. 2020. "Design of Paracetamol Delivery Systems Based on Functionalized Ordered Mesoporous Carbons" Materials 13, no. 18: 4151. https://doi.org/10.3390/ma13184151
APA StyleGoscianska, J., Ejsmont, A., Olejnik, A., Ludowicz, D., Stasiłowicz, A., & Cielecka-Piontek, J. (2020). Design of Paracetamol Delivery Systems Based on Functionalized Ordered Mesoporous Carbons. Materials, 13(18), 4151. https://doi.org/10.3390/ma13184151