Melt-Spun Fibers for Textile Applications
Abstract
:1. Introduction
2. Raw Materials for Melt-Spinning
2.1. Polymers and Their Spinnability
- withstand extrusion temperature and shear strain at minimal degradation and without crosslinking (thermal stability);
- have sufficiently high molecular weight and thus enough melt-strength to prevent filament break under draw-down strain (too high molecular weight and thus too high viscosity can hamper processability);
- exhibit small polydispersity (narrow molecular weight distribution) to ensure consistent melt flow rheology (constant flow);
- have high enough mobility of the molecular chains to disentangle and unfold under stress and to orient in fiber direction under strain (linear polymers are most suitable);
- show high uniformity and purity to prevent fluctuations and blockage in processing.
2.2. Polyamides
2.3. Polyesters
2.4. Polyolefins
2.5. Chemically Inert Polymers
2.6. Thermoplastic Elastomers
2.7. Amorphous Polymers
2.8. Biopolymers
3. Additives for Melt-Spinning
3.1. Function of Additives
3.2. Processing Aids
3.3. Enhancing Additives
3.4. Functional Additives
4. Polymer Melt-Spinning
4.1. Melt-Spinning Technique
4.2. Extrusion Line
4.3. Spinneret
4.4. Filament Draw-down Unit
- a strain imposed on a stack of crystal lamellae initially causes stretching of the interlamellar amorphous phases supporting the applied load (first, elastic part of the stress-strain curve);
- further stretching leads to slip-tilting and breakup of lamellae at the weakest points through chain pulling and unfolding, leading to the initial abrupt change in filament cross-section (yield point, indicates transition from elastic to plastic deformation);
- afterwards, as merely slippage of the lamellar fragments occurs, the filament shows deformation without much resistance and the required force remains practically constant (natural draw ratio);
- finally, all the chains are unfolded and the lamellar fragments, still connected by the pulled chains (tie molecules), form fibrils of alternating crystal blocks and stretched non-crystalline regions.
5. Physics of Melt-Spinning
5.1. Orientation in Polymer Fibers
5.2. Mechanical Properties of Melt-Spun Fibers
5.3. Melt-Spinning Instabilities
6. Bicomponent Melt-Spinning
6.1. Objective of Bicomponent Spinning
6.2. Cross-Section Geometries
6.3. Spin Pack Design
7. Applications and Specialty Melt-Spun Fibers
7.1. Overview
7.2. Microfibers
7.3. Bioresorbable Fibers for Medical Applications
7.4. Antimicrobial Fibers
7.5. Conductive Fibers
7.6. Optical Fibers
7.7. Hollow and Liquid-Core Fibers
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary
as-spun filament | filament spun and solidified without drawing & annealing |
birefringence | measure of molecular orientation in polymers |
bobbin (spool) | plastic or cardboard tube on which filaments are wound |
die (nozzle) | orifice to eject a polymer solution or melt as coherent stream |
die swell | relaxation and expansion of a polymer stream leaving the die |
draw-down ratio (DDR) | ratio between die exit velocity and take-up velocity |
draw ratio (DR) | ratio between speeds of take-up godet and winder |
filament | continuous fiber, typically spun as multiple filaments |
fully drawn yarn (FDY) | highly oriented filament(s) melt-spun with integrated drawing |
glass-transition temperature (Tg) | temperature where an amorphous material’s state changes from hard to viscous |
godet (roller, galette) | revolving cylinder for heating and drawing of filaments |
hopper (funnel) | tapered chamber to hold and dispense feed material (polymer granulate, chips) |
low oriented yarn (LOY) | filament(s) melt-spun at low speed to be post-processed by drawing and texturizing |
melting temperature (Tm) | temperature where a crystalline material’s state changes from solid to liquid |
necking | stress-induced, abrupt decrease in filament cross-sectional area, relevant for molecular orientation and crystallization |
partially oriented yarn (POY) | partially oriented filament(s) to be post-processed by drawing & texturizing |
spin finish | liquid applied to reduce electrostatic effects and facilitate processing of filaments |
spinneret | equipment comprising multiple of dies to form filaments from a polymer solution or melt |
staple fibers | filaments cut or torn into short fibers for yarn spinning or nonwoven production |
texturizing | thermo-mechanical process to impart crimp and bulkiness to man-made filaments (draw textured yarn, DTY) |
yarn count (titer) | linear density (mass per unit length) of fibers or yarns, with unit “tex” in the SI system (1 tex = 1 mg/m) |
Abbreviations | |
COP | cyclo olefin polymer |
HDPE | high-density polyethylene |
LCP | liquid-crystal polymer |
LDPE | low-density polyethylene |
P3HB | poly-3-hydroxybutyrate |
P4HB | poly-4-hydroxybutyrate |
PA 6 | polyamide 6 |
PA 6.6 | polyamide 6.6 |
PAC | polyacetylene |
PANI | polyaniline |
PBAT | polybutylene adipate terephthalate |
PBT | polybutylene terephthalate |
PC | polycarbonate |
PCL | polycaprolactone |
PEDOT:PSS | poly(3,4-ethylenedioxithiophene) polystyrene sulfonate |
PEE | poly(ether ester) |
PEEK | polyetheretherketone |
PEF | polyethylene furanoate |
PEI | polyetherimide |
PEN | polyethylene naphthalate |
PET | polyethylene terephthalate |
PF | polyfluorene |
PGA | polyglycolide |
PHA | polyhydroxyalkanoate |
PHBH | polyhydroxybutyrate-co-hydroxyhexanoate |
PHBV | polyhydroxybutyrate-co-hydroxyvalerate |
PLA | polylactic acid |
PMMA | polymethylmethacrylate |
PP | polypropylene |
PPP | poly(p-phenylene) |
PPS | polyphenylene sulfide |
PPV | poly(p-phenylene vinylene) |
PPy | polypyrrole |
PS | polystyrene |
PTFE | polytetrafluoroethylene |
PTh | polythiophene |
PTT | polytrimethylene terephthalate |
PU | polyurethane |
PVDF | polyvinylidene fluoride |
PVF | polyvinyl fluoride |
TPO | thermoplastic polyolefin elastomer |
TPU | thermoplastic polyurethane |
UHMWPE | ultra-high molecular weight polyethylene |
References
- Kauffman, G.B. Rayon: The First Semi-Synthetic Fiber Product. J. Chem. Educ. 1993, 70, 887–893. [Google Scholar] [CrossRef]
- Spear, B. Let there be light! Sir Joseph Swan and the incandescent light bulb. World Pat. Inf. 2013, 35, 38–41. [Google Scholar] [CrossRef]
- DuPont. Available online: https://www.dupont.com/about/our-history.html (accessed on 31 July 2020).
- SRF. Available online: https://www.srf.ch/kultur/wissen/kunstfaser-perlon-nazi-deutschlands-antwort-auf-nylon (accessed on 31 July 2020).
- Jewkes, J.; Sawers, D.; Stillerman, R. The Sources of Invention; Palgrave Macmillan: London, UK, 1969. [Google Scholar]
- Sauter, D.W.; Taoufik, M.; Boisson, C. Polyolefins, a Success Story. Polymers 2017, 9, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziabicki, A. Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing; John Wiley & Sons: Hoboken, NJ, USA, 1976. [Google Scholar]
- Fourné, F. Synthetic Fibers: Machines and Equipment, Manufacture, Properties; Hanser: Munich, Germany, 1999. [Google Scholar]
- Walczak, Z.K. Processes of Fiber Formation; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Beyreuther, R.; Vogel, R. Spinnability of polymer melts: A complex problem in basic research. Int. Polym. Process. 1996, 11, 154–158. [Google Scholar] [CrossRef]
- Sen, K. Polypropylene fibres. In Manufactured Fibre Technology; Gupta, V.B., Kothari, V.K., Eds.; Chapman & Hall: London, UK, 1997; pp. 457–479. [Google Scholar]
- Jaffe, M.; East, A.J. Polyester Fibers. In Handbook of Fiber Chemistry; Lewin, M., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–29. [Google Scholar]
- Reese, G. Polyester Fibers: Fiber Formation and End-Use Applications. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; Scheirs, J., Long, T.E., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Wagner, J.R.; Mount, E.M.; Giles, H.F. Extrusion: The Definitive Processing Guide and Handbook, 2nd ed.; William Andrew: Norwich, NY, USA, 2005. [Google Scholar]
- Rosato, D.V.; Schott, N.R.; Rosato, D.V.; Rosato, M.G. Plastics Engineering, Manufacturing and Data Handbook; Kluwer Academic Publishers: New York, NY, USA, 2001. [Google Scholar]
- Perepelkin, K.E. The effect of the liquid and gas phase transitions on the extrusion stability in man-made fibre and film processes. Fibre Chem. 1972, 3, 115–123. [Google Scholar] [CrossRef]
- Prevorsek, D.C.; Tirpak, G.A.; Harget, P.J.; Reimschuessel, A.C. Effects of thermal contraction on structure and properties of PET fibers. J. Macromol. Sci. Part B 1974, 9, 733–759. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.K. Manufacturing, properties and tensile failure of nylon fibres. In Handbook of Tensile Properties of Textile and Technical Fibres; Bunsell, A.R., Ed.; Woodhead Publishing: Cambridge, UK, 2009; pp. 197–222. [Google Scholar]
- Sattler, H.; Schweizer, M. Fibers, 5. Polyester Fibers. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ouederni, M. Polyolefin Compounds and Materials: Fundamentals and Industrial Applications. In Polyolefins in Textiles and Nonwovens; Al-Ali AlMa’adeed, M., Krupa, I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 231–245. [Google Scholar]
- Niaounakis, M. Biopolymers: Processing and Products; William Andrew Publishing: Oxford, UK, 2015. [Google Scholar]
- East, A.J. The structure of polyester fibers. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 1, pp. 181–231. [Google Scholar]
- Mochizuki, M. Synthesis, properties and structure of polylactic acid fibres. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 1, pp. 257–275. [Google Scholar]
- Hearle, J.W.S. Thermally and chemically resistant fibres: Structure and properties. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 2, pp. 450–457. [Google Scholar]
- Domininghaus, H. Die Kunststoffe und ihre Eigenschaften, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Van Krevelen, D.W.; te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Osswald, T.A.; Menges, G. Materials Science of Polymers for Engineers, 3rd ed.; Carl Hanser: Cincinnati, OH, USA, 2012. [Google Scholar]
- Takasaki, M.; Ito, H.; Kikutani, T. Structure Development of Polylactides with Various d-Lactide Contents in the High-Speed Melt Spinning Process. J. Macromol. Sci. Part B 2003, 42, 57–73. [Google Scholar] [CrossRef]
- Anton, A.; Baird, B.R. Polyamides, Fibers. In Encyclopedia of Polymer Science and Technology; Mark, H.F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 3, pp. 584–618. [Google Scholar]
- Vasanthan, N. Polyamide fiber formation: Structure, properties and characterization. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 1, pp. 232–256. [Google Scholar]
- Deopura, B.L. Polyamide fibers. In Polyesters and Polyamides; Deopura, B.L., Alagirusamy, R., Joshi, M., Gupta, B., Eds.; Woodhead Publishing: Cambridge, UK, 2008. [Google Scholar]
- Yan, Y.; Gooneie, A.; Ye, H.; Deng, L.; Qiu, Z.; Reifler, F.A.; Hufenus, R. Morphology and Crystallization of Biobased Polyamide 56 Blended with Polyethylene Terephthalate. Macromol. Mater. Eng. 2018, 303, 1800214. [Google Scholar] [CrossRef]
- Morales-Gámez, L.; Soto, D.; Franco, L.; Puiggalí, J. Brill transition and melt crystallization of nylon 56: An odd–even polyamide with two hydrogen-bonding directions. Polymer 2010, 51, 5788–5798. [Google Scholar] [CrossRef]
- Hufenus, R.; Yan, Y.; Dauner, M.; Yao, D.; Kikutani, T. Bicomponent Fibers. In Handbook of Fibrous Materials; Hu, J., Kumar, B., Lu, J., Eds.; Wiley-VCH: Weinheim, Germany, 2020; Volume 1, pp. 281–313. [Google Scholar]
- Mitsubishi Gas Chemical. Available online: https://www.mgc.co.jp/eng/products/ac/nmxd6/index.html (accessed on 31 July 2020).
- Akro-Plastic. Available online: https://akro-plastic.com/compound-overview/akromid-t/ (accessed on 31 July 2020).
- Militky, J. The chemistry, manufacture and tensile behaviour of polyester fibers. In Handbook of Tensile Properties of Textile and Technical Fibres; Bunsell, A.R., Ed.; Woodhead Publishing: Cambridge, UK, 2009; pp. 223–314. [Google Scholar]
- Chuah, H.H. Poly(trimethylene terephthalate). In Encyclopedia of Polymer Science and Technology; Mark, H.F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; Volume 3, pp. 544–558. [Google Scholar]
- Sakellarides, S.L. Poly(ethylene naphthalate) (PEN). In Encyclopedia of Polymer Science and Technology; Mark, H.F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 11, pp. 88–114. [Google Scholar]
- Chen, P.; Kotek, R. Advances in the Production of Poly(ethylene naphthalate) Fibers. Polym. Rev. 2018, 48, 392–421. [Google Scholar]
- Mather, R.R. The structure of polyolefin fibres. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 1, pp. 276–304. [Google Scholar]
- Malkan, S.R. Improving the use of polyolefins in nonwovens. In Polyolefin Fibres; Ugbolue, S.C.O., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 285–311. [Google Scholar]
- Ward, I.M.; Lemstra, P.J. Production and properties of highmodulus and high-strength polyethylene fibres. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 1, pp. 352–393. [Google Scholar]
- Toyobo. Available online: https://www.toyobo-global.com/seihin/dn/tsunooga/index.html (accessed on 31 July 2020).
- Horrocks, A.R.; McIntosh, B. Chemically resistant fibres. In High-Performance Fibres; Hearle, J.W.S., Ed.; Woodhead Publishing: Cambridge, UK, 2001; pp. 259–280. [Google Scholar]
- Gangal, S.V.; Brothers, P.D. Perfluorinated Polymers, Perfluorinated Ethylene–Propylene Copolymers. In Encyclopedia of Polymer Science and Technology; Mark, H.F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Frick, A.; Sich, D.; Heinrich, G.; Stern, C.; Schlipf, M. Classification of New Melt-Processable PTFE: Comparison of Emulsion—And Suspension-Polymerized Materials. Macromol. Mater. Eng. 2012, 297, 329–341. [Google Scholar] [CrossRef]
- Seo, K.S. Rheology and Processing of Thermotropic Liquid Crystalline Polymers. In Thermotropic Liquid Crystal Polymers: Thin-film Polymerization, Characterization, Blends and Applications; Chung, T.-S., Ed.; Technomic Publishing: Lancaster, UK, 2001; pp. 219–256. [Google Scholar]
- Chen, B.-K.; Tsay, S.-Y.; Chen, J.-Y. Synthesis and properties of liquid crystalline polymers with low Tm and broad mesophase temperature ranges. Polymer 2005, 46, 8624–8633. [Google Scholar] [CrossRef]
- Sloan, F. Liquid crystal aromatic polyester-arylate (LCP) fibers: Structure, properties, and applications. In Structure and Properties of High-Performance Fibers; Bhat, G., Ed.; Woodhead Publishing: Oxford, UK, 2017; pp. 113–140. [Google Scholar]
- Cheng, S.Z.D.; Li, F.; Li, C.Y.; McCreight, K.W.; Yoon, Y.; Harris, F.W. Fibers from Liquid Crystalline Polymers. In Structure Formation in Polymeric Fibers; Salem, D.R., Ed.; Carl Hanser Publishers: Munich, Germany, 2001; pp. 247–295. [Google Scholar]
- Yamamoto, Y.; Nakagawa, J. The structure and properties of high-modulus, high-tenacity Vectran™ fibres. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 1, pp. 413–428. [Google Scholar]
- Kuraray. Available online: https://www.kuraray.com/products/vectran (accessed on 31 July 2020).
- Otaigbes, J.U.; Madbouly, A. The processing, structure and properties of elastomeric fibers. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 1, pp. 325–351. [Google Scholar]
- Abraham, T.; McMahan, C. Thermoplastic Elastomers: Fundamentals and Applications. In Rubber Compounding: Chemistry and Applications; Rodgers, B., Ed.; Marcel Dekker: New York, NY, USA, 2004; pp. 163–238. [Google Scholar]
- Jing, L. Elastic Fibers. In Handbook of Fibrous Materials; Hu, J., Kumar, B., Lu, J., Eds.; Wiley-VCH: Weinheim, Germany, 2020; Volume 1, pp. 335–359. [Google Scholar]
- Fibre2Fashion. Available online: https://www.fibre2fashion.com/industry-article/1/a-new-process-of-producing-spandex-yarns (accessed on 31 July 2020).
- Datta, J.; Kasprzyk, P. Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review. Polym. Eng. Sci. 2018, 58, E14–E35. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Lu, J.; Zhu, Y. New Developments in Elastic Fibers. Polym. Rev. 2008, 48, 275–301. [Google Scholar] [CrossRef]
- Spiridonov, P.; Lambrinos, E.; Peng, Z. Extrusion of monofilaments of thermoplastic elastomers. Synth. Met. 2005, 152, 61–64. [Google Scholar] [CrossRef]
- Casey, P.; Chen, H.; Poon, B.; Bensason, S.; Menning, B.; Liu, L.; Hu, Y.; Hoenig, W.; Gelfer, M.; Dems, B.; et al. Polyolefin Based Crosslinked Elastic Fiber: A Technical Review of DOW XLA™ Elastic Fiber Technology. Polym. Rev. 2008, 48, 302–316. [Google Scholar] [CrossRef]
- Leal, A.A.; Best, J.P.; Rentsch, D.; Michler, J.; Hufenus, R. Spectroscopic elucidation of structure-property relations in filaments melt-spun from amorphous polymers. Eur. Polym. J. 2017, 89, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Kasai, N.; Kakudo, M. X-Ray Diffraction by Macromolecules; Kodansha Ltd.: Tokyo, Japan; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Chung, C.I. Extrusion of Polymers: Theory and Practice, 3rd ed.; Carl Hanser Verlag: Munich, Germany, 2019. [Google Scholar]
- Leal, A.A.; Mohanty, G.; Reifler, F.A.; Michler, J.; Hufenus, R. Mechanical response of melt-spun amorphous filaments. Sci. Technol. Adv. Mater. 2014, 15, 35016. [Google Scholar] [CrossRef]
- Reifler, F.A.; Hufenus, R.; Krehel, M.; Zgraggen, E.; Rossi, R.M.; Scherer, L.J. Polymer optical fibers for textile applications—Bicomponent melt spinning from cyclic olefin polymer and structural characteristics revealed by wide angle X-ray diffraction. Polymer 2014, 55, 5695–5707. [Google Scholar] [CrossRef]
- Ebewele, R.O. Polymer Science and Technology; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Zia, Q.; Androsch, R.; Radusch, H.-J. Effect of the structure at the micrometer and nanometer scales on the light transmission of isotactic polypropylene. J. Appl. Polym. Sci. 2010, 117, 1013–1020. [Google Scholar] [CrossRef]
- Zaremba, D.; Evert, R. Materials, chemical properties and analysis. In Polymer Optical Fibres; Bunge, C.-A., Gries, T., Beckers, M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 153–186. [Google Scholar]
- Avinc, O.; Khoddami, A. Overview of Poly(lactic acid) (PLA) Fibre. Fibre Chem. 2009, 41, 391–401. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biotechnol. 2006, 72, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Södergård, A.; Inkinen, S. Production, Chemistry and Properties of Polylactides. In Biopolymers—New Materials for Sustainable Films and Coatings; Plackett, D., Ed.; John Wiley & Sons: Chichester, UK, 2011; pp. 43–63. [Google Scholar]
- Tsuji, H. Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 2005, 5, 569–597. [Google Scholar] [CrossRef] [PubMed]
- Roungpaisan, N.; Takarada, W.; Kikutani, T. Development of Polylactide Fibers Consisting of Highly Oriented Stereocomplex Crystals Utilizing High-Speed Bicomponent Melt Spinning Process. J. Fiber Sci. Technol. 2019, 75, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Takasaki, M.; Ito, H.; Kikutani, T. Development of Stereocomplex Crystal of Polylactide in High-Speed Melt Spinning and Subsequent Drawing and Annealing Processes. J. Macromol. Sci. Part B 2003, 42, 403–420. [Google Scholar] [CrossRef]
- Azimi, B.; Nourpanah, P.; Rabiee, M.; Arbab, S. Poly (∊-caprolactone) Fiber: An Overview. J. Eng. Fibers Fabr. 2014, 9, 155892501400900309. [Google Scholar] [CrossRef]
- Kwon, G.S.; Furgeson, D.Y. Biodegradable polymers for drug delivery systems. In Biomedical Polymers; Jenkins, M., Ed.; Woodhead Publishing: Cambridge, UK, 2007; pp. 83–110. [Google Scholar]
- Gupta, B.; Ray, G.A.R. Preparation of poly(ε-caprolactone)/poly(ε-caprolactone-co-lactide) (PCL/PLCL) blend filament by melt spinning. J. Appl. Polym. Sci. 2012, 123, 1944–1950. [Google Scholar] [CrossRef]
- Hinüber, C.; Häussler, L.; Vogel, R.; Brünig, H.; Heinrich, G.; Werner, C. Hollow fibers made from a poly(3-hydroxybutyrate)/poly-ε-caprolactone blend. Express Polym. Lett. 2011, 5, 643–652. [Google Scholar] [CrossRef]
- Meng, Q.; Hu, J. Study on poly(ε-caprolactone)-based shape memory copolymer fiber prepared by bulk polymerization and melt spinning. Polym. Adv. Technol. 2008, 19, 131–136. [Google Scholar] [CrossRef]
- Pal, J.; Kankariya, N.; Sanwaria, S.; Nandan, B.; Srivastava, R.K. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning-A way to produce high strength biodegradable fibers. Mater. Sci. Eng. C 2013, 33, 4213–4220. [Google Scholar] [CrossRef]
- Mochizuki, M.; Nakayama, K.; Qian, R.; Jiang, B.-Z.; Hirami, M.; Hayashi, T.; Masuda, T.; Nakajima, A. Studies on the biodegradable poly(hexano-6-lactone) fibers 1. Structure and properties of drawn poly(hexano-6-lactone) fibers (Technical Report). Pure Appl. Chem. 1997, 69, 2567–2576. [Google Scholar] [CrossRef]
- Charuchinda, A.; Molloy, R.; Siripitayananon, J.; Molloy, N.; Sriyai, M. Factors influencing the small-scale melt spinning of poly(ε-caprolactone) monofilament fibres. Polym. Int. Sci. 2003, 52, 1175–1181. [Google Scholar] [CrossRef]
- Krishnanand, K.; Deopura, B.L.; Gupta, B. Determination of intrinsic birefringence values of polycaprolactone filaments. Polym. Int. 2012, 62, 49–53. [Google Scholar] [CrossRef]
- Perret, E.; Reifler, F.A.; Gooneie, A.; Chen, K.; Selli, F.; Hufenus, R. Structural response of melt-spun poly(3-hydroxybutyrate) fibers to stress and temperature. Polymer 2020, 197, 122503. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Sharma, C.P. Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. J. Biomater. Appl. 2010, 25, 291–366. [Google Scholar] [CrossRef] [PubMed]
- Muffly, T.M.; Tizzano, A.P.; Walters, M.D. The history and evolution of sutures in pelvic surgery. J. R. Soc. Med. 2011, 104, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Ikada, Y.; Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid Commun. 2000, 21, 117–132. [Google Scholar] [CrossRef]
- Saigusa, K.; Takarada, W.; Kikutani, T. Improvement of the Mechanical Properties of Poly(Glycolic Acid) Fibers Through Control of Molecular Entanglements in the Melt Spinning Process. J. Macromol. Sci. Part B 2020, 59, 399–414. [Google Scholar] [CrossRef]
- Saigusa, K.; Saijo, H.; Yamazaki, M.; Takarada, W.; Kikutani, T. Influence of carboxylic acid content and polymerization catalyst on hydrolytic degradation behavior of Poly(glycolic acid) fibers. Polym. Degrad. Stab. 2020, 172, 109054. [Google Scholar] [CrossRef]
- Jiang, L.; Wolcott, M.P.; Zhang, J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Biomacromolecules 2006, 7, 199–207. [Google Scholar] [CrossRef]
- Witt, U.; Müller, R.J.; Deckwer, W.D. Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. J. Environ. Polym. Degrad. 1997, 5, 81–89. [Google Scholar] [CrossRef]
- Shi, X.; Ito, H.; Kikutani, T. Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 2005, 46, 11442–11450. [Google Scholar] [CrossRef]
- Manvi, P.K.; Beckers, M.; Mohr, B.; Seide, G.; Gries, T.; Bunge, C.-A. Polymer fiber-based biocomposites for medical sensing applications. In Materials for Biomedical Engineering; Grumezescu, V., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–88. [Google Scholar]
- Nakajima, H.; Dijkstra, P.; Loos, K. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers 2017, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Leja, K.; Lewandowicz, G. Polymer biodegradation and biodegradable polymers-A review. Pol. J. Environ. Stud. 2010, 19, 255–266. [Google Scholar]
- Freier, T. Biopolyesters in Tissue Engineering Applications. Adv. Polym. Sci. 2006, 203, 1–61. [Google Scholar]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Zinn, M.; Witholt, B.; Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 2001, 53, 5–21. [Google Scholar] [CrossRef]
- Chen, G.Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26, 6565–6578. [Google Scholar] [CrossRef]
- Bonartsev, G.A.; Myshkina, V.L.; Nikolaeva, D.A.; Kevbrina, M.V.; Kallistova, A.Y.; Gerasin, V.A.; Iordanskii, A.L.; Nozhevnikova, A.N. Aerobic and Anaerobic Microbial Degradation of Poly-β-Hydroxybutyrate Produced by Azotobacter chroococcum. Appl. Biochem. Biotechnol. Part A Enzyme Eng. Biotechnol. 2003, 109, 285–302. [Google Scholar] [CrossRef]
- Iwata, T.; Doi, Y. Crystal structure and biodegradation of aliphatic polyester crystals. Macromol. Chem. Phys. 1999, 200, 2429–2442. [Google Scholar] [CrossRef]
- Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Bioplastics with a green agenda. Curr. Opin. Microbiol. 2010, 13, 321–326. [Google Scholar] [CrossRef]
- Pan, P.; Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. (Oxf.) 2009, 34, 605–640. [Google Scholar] [CrossRef]
- Yokouchi, M.; Chatani, Y.; Tadokoro, H.; Teranishi, K.; Tani, H. Structural studies of polyesters: 5. Molecular and crystal structures of optically active and racemic poly(β-hydroxybutyrate). Polymer 1973, 14, 267–272. [Google Scholar] [CrossRef]
- Lenz, R.W.; Marchessault, R.H. Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules 2005, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hufenus, R.; Reifler, F.A.; Fernández-Ronco, M.P.; Heuberger, M. Molecular orientation in melt-spun poly(3-hydroxybutyrate) fibers: Effect of additives, drawing and stress-annealing. Eur. Polym. J. 2015, 71, 12–26. [Google Scholar] [CrossRef]
- Vogel, R.; Voigt, D.; Tändler, B.; Gohs, U.; Haussler, L.; Brünig, H. Melt Spinning of Poly(3-hydroxybutyrate) for Tissue Engineering Using Electron-Beam-Irradiated Poly(3-hydroxybutyrate) as Nucleation Agent. Macromol. Biosci. 2008, 8, 426–431. [Google Scholar] [CrossRef]
- Tanaka, T.; Yabe, T.; Teramachi, S.; Iwata, T. Mechanical properties and enzymatic degradation of poly[(R)-3-hydroxybutyrate] fibers stretched after isothermal crystallization near Tg. Polym. Degrad. Stab. 2007, 92, 1016–1024. [Google Scholar] [CrossRef]
- Furuhashi, Y.; Imamura, Y.; Jikihara, Y.; Yamane, H. Higher order structures and mechanical properties of bacterial homo poly(3-hydroxybutyrate) fibers prepared by cold-drawing and annealing processes. Polymer 2004, 45, 5703–5712. [Google Scholar] [CrossRef]
- Schmack, G.; Jehnichen, D.; Vogel, R.; Tändler, B. Biodegradable fibers of poly(3-hydroxybutyrate) produced by high-speed melt spinning and spin drawing. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2841–2850. [Google Scholar] [CrossRef]
- Gordeyev, S.A.; Nekrasov, Y.P. Processing and mechanical properties of oriented poly(β-hydroxybutyrate) fibers. J. Mater. Sci. Lett. 1999, 18, 1691–1692. [Google Scholar] [CrossRef]
- Tanaka, T.; Fujita, M.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Ito, K.; Fujisawa, T.; Doi, Y.; Iwata, T. Formation of Highly Ordered Structure in Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] High-Strength Fibers. Macromolecules 2006, 39, 2940–2946. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kimizu, M.; Kikutani, T.; Furuhashi, Y.; Cakmak, M. The Effect of Drawing and Annealing Conditions on the Structure and Properties of Bacterial Poly (3-hydroxybutyrate-co-3 hydroxyvalerate) Fibers. Int. Polym. Process. 1997, 12, 29–37. [Google Scholar] [CrossRef]
- Hufenus, R.; Reifler, F.A.; Maniura-Weber, K.; Spierings, A.; Zinn, M. Biodegradable Bicomponent Fibers from Renewable Sources: Melt-Spinning of Poly (lactic acid) and Poly[(3-hydroxybutyrate)-co- (3-hydroxyvalerate)]. Macromol. Mater. Eng. 2012, 297, 75–84. [Google Scholar] [CrossRef]
- Bond, E.B. Fiber spinning behavior of a 3-hydroxybutyrate/3-hydroxyhexanoate copolymer. Macromol. Symp. 2003, 197, 19–32. [Google Scholar] [CrossRef]
- Kabe, T.; Hongo, C.; Tanaka, T.; Hikima, T.; Takata, M.; Iwata, T. High tensile strength fiber of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] processed by two-step drawing with intermediate annealing. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Kaneka. Available online: http://www.kaneka.be/documents/PHBH-brochure-11-2017.pdf (accessed on 31 July 2020).
- Qin, Q.; Takarada, W.; Kikutani, T. Fiber Structure Development of PHBH through Stress-Induced Crystallization in High-Speed Melt Spinning Process. J. Fiber Sci. Technol. 2017, 73, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Martin, D.P. Poly-4-hydroxybutyrate (P4HB) in Biomedical Applications and Tissue Engineering. In Biodegradable Polymers: New Biomaterial Advancements and Challenges; Chu, C.C., Ed.; Nova Science: Hauppauge, NY, USA, 2015; Volume 2, pp. 199–231. [Google Scholar]
- Martin, D.P.; Williams, S.F. Medical applications of poly-4-hydroxybutyrate: A strong flexible absorbable biomaterial. Biochem. Eng. J. 2003, 16, 97–105. [Google Scholar] [CrossRef]
- Subramanian, M.N. Plastics Additives and Testing; Scrivener Publishing: Salem, MA, USA, 2013. [Google Scholar]
- Stloukal, P.; Jandikova, G.; Koutný, M.; Sedlarik, V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym. Test. 2016, 54, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Wypych, G. Handbook of Nucleating Agents; ChemTec Publishing: Toronto, ON, Canada, 2016. [Google Scholar]
- Rizvi, S.Q.A. Dispersants. Chemistry and Applications. In Lubricant Additives; Rudnick, L.R., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 45–65. [Google Scholar]
- Gooneie, A.; Simonetti, P.; Salmeia, K.A.; Gaan, S.; Hufenus, R.; Heuberger, M.P. Enhanced PET processing with organophosphorus additive: Flame retardant products with added-value for recycling. Polym. Degrad. Stab. 2019, 160, 218–228. [Google Scholar] [CrossRef]
- Migler, K.B. Sharkskin Instability in Extrusion. In Polymer Processing Instabilities; Hatzikiriakos, S.G., Migler, K.B., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 121–159. [Google Scholar]
- Georgiou, G. Stick-Slip Instability. In Polymer Processing Instabilities; Hatzikiriakos, S.G., Migler, K.B., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 161–206. [Google Scholar]
- Tolinski, M. Additives for Polyolefins, 2nd ed; William Andrew Publishing: Oxford, UK, 2015. [Google Scholar]
- Salmeia, K.A.; Gaan, S.; Malucelli, G. Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry. Polymers 2016, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Lewin, M.; Weil, E.D. Mechanisms and modes of action in flame retardancy of polymers. In Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2001; pp. 31–68. [Google Scholar]
- Marcilla, A.; Beltrán, M. Mechanisms of Plasticizers Action. In Handbook of Plasticizers; Wypych, G., Ed.; ChemTec Publishing: Toronto, ON, Canada, 2017; pp. 119–134. [Google Scholar]
- Gooneie, A.; Hufenus, R. Hybrid Carbon Nanoparticles in Polymer Matrix for Efficient Connected Networks: Self-Assembly and Continuous Pathways. Macromolecules 2018, 51, 3547–3562. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, A.K. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci. 2015, 51, 127–187. [Google Scholar] [CrossRef] [Green Version]
- Fu, K.; Padbury, R.; Toprakci, O.; Dirican, M.; Zhang, X. 13—Conductive textiles. In Engineering of High-Performance Textiles; Miao, M., Xin, J.H., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 305–334. [Google Scholar]
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, F.; Lu, W.; Li, Q.; Byun, J.-H.; Oh, Y.; Chou, T.-W. Graphene-Based Fibers: A Review. Adv. Mater. 2015, 27, 5113–5131. [Google Scholar] [CrossRef]
- Deng, Y.; Si, Y.; Sun, G. Fibrous Materials for Antimicrobial Applications. In Handbook of Fibrous Materials; Hu, J., Kumar, B., Lu, J., Eds.; Wiley-VCH: Weinheim, Germany, 2020; Volume 2, pp. 927–951. [Google Scholar]
- Toray. Available online: https://www.sportstextiles.toray/exhibition/21fw/images/leaflet/leaflet_bodyshell.pdf (accessed on 31 July 2020).
- Rauwendaal, C. Understanding Extrusion, 3rd ed.; Hanser: Munich, Germany, 2018. [Google Scholar]
- Barmag, O. Available online: https://www.oerlikon.com/manmade-fibers/en/solutions-technologies/gear-metering-pumps/manmade-fiber-applications/ (accessed on 31 July 2020).
- Yang, H.H. Polyamide Fibers. In Handbook of Fiber Chemistry; Lewin, M., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 31–137. [Google Scholar]
- Tadmor, Z.; Gogos, C.G. Principles of Polymer Processing, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hagewood, J. Technologies for the manufacture of synthetic polymer fibers. In Advances in Filament Yarn Spinning of Textiles and Polymers; Zhang, D., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 48–71. [Google Scholar]
- Zhu, M.-F.; Yang, H.H. Polypropylene Fibers. In Handbook of Fiber Chemistry; Lewin, M., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 139–260. [Google Scholar]
- Gupta, V.B.; Bhuvanesh, Y.C. Basic principles of flow during fibre spinning. In Manufactured Fibre Technology; Gupta, V.B., Kothari, V.K., Eds.; Chapman & Hall: London, UK, 1997; pp. 31–66. [Google Scholar]
- Kikutani, T.; Radhakrishnan, J.; Sato, M.; Okui, N.; Takaku, A. High-speed Melt Spinning of PET. Int. Polym. Process. 1996, 11, 42–49. [Google Scholar] [CrossRef]
- Miyata, K.; Ito, H.; Kikutani, T.; Okui, N. Effect of Liquid Isothermal Bath in High-Speed Melt Spinning of Poly(ethylene 2,6-naphthalene dicarboxylate). Sen’i Gakkaishi 1998, 54, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Avci, H.; Kotek, R.; Toliver, B. Controlling of threadline dynamics via a novel method to develop ultra-high performance polypropylene filaments. Polym. Eng. Sci. 2015, 55, 327–339. [Google Scholar] [CrossRef]
- Najafi, M.; Avci, H.; Kotek, R. High-performance filaments by melt spinning low viscosity nylon 6 using horizontal isothermal bath process. Polym. Eng. Sci. 2015, 55, 2457–2464. [Google Scholar] [CrossRef]
- Peacock, A.J.; Calhoun, A. Polymer Chemistry: Properties and Applications; Carl Hanser Verlag: Munich, Germany, 2006. [Google Scholar]
- Tomka, J.G. Textile Fibres. In Comprehensive Polymer Science and Supplements; Allan, G., Ed.; Pergamon Press: London, UK, 1989; Volume 2, pp. 487–510. [Google Scholar]
- Spruiell, J.E. Structure Formation During Melt Spinning. In Structure Formation in Polymeric Fibers; Salem, D.R., Ed.; Carl Hanser Verlag: Munich, Germany, 2001; pp. 5–93. [Google Scholar]
- Bessey, W.; Jaffe, M. Solid State Processing of Fibers. In Solid Phase Processing of Polymers; Ward, I.M., Coates, P.D., Dumoulin, M.M., Eds.; Hanser: Munich, Germany, 2000; pp. 85–119. [Google Scholar]
- Gupta, V.B. Melt-spinning processes. In Manufactured Fibre Technology; Gupta, V.B., Kothari, V.K., Eds.; Chapman & Hall: London, UK, 1997; pp. 67–97. [Google Scholar]
- Jung, H.W.; Hyun, J.C. Fiber spinning and film blowing instabilities. In Polymer Processing Instabilities: Control and Understanding; Hatzikiriakos, S.G., Migler, K.B., Eds.; Marcel Dekker Series: New York, NY, USA, 2004; Volume 102, pp. 321–382. [Google Scholar]
- Larson, R.G. Instabilities in viscoelastic flows. Rheol. Acta 1992, 31, 213–263. [Google Scholar] [CrossRef]
- Kikutani, T. Fiber Formation Technology for Polymers Accomplished Technology and Future Direction of Synthetic Fibers. Sen’i Gakkaishi 1998, 54, P37–P42. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, J.; Gupta, V.B. Characterization of the network in nonbirefringent flow-drawn poly(ethylene terephthalate) films. J. Macromol. Sci. Part B 1993, 32, 243–259. [Google Scholar] [CrossRef]
- Chatterjee, A. Continuous Filament and Texturised Synthetic Yarns. In Textile and Clothing Design Technology; Cassidy, T., Goswami, P., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 57–86. [Google Scholar]
- Eichhorn, S.J.; Hearle, J.W.S.; Jaffe, M.; Kikutani, T. Handbook of Textile fibre Structure: Fundamentals and Manufactured Polymer Fibres; Woodhead Publishing: Cambridge, UK, 2009. [Google Scholar]
- Masuda, M.; Takarada, W.; Kikutani, T. Effect of the Control of Polymer Flow in the Vicinity of Spinning Nozzle on Mechanical Properties of Poly(ethylene terephthalate) Fibers. Int. Polym. Process. 2010, 25, 159–169. [Google Scholar] [CrossRef]
- Salem, D.R. Structure Formation During Drawing of Flexible Chain Polymers. In Structure Formation in Polymeric Fibers; Salem, D.R., Ed.; Carl Hanser Verlag: Munich, Germany, 2001; pp. 118–184. [Google Scholar]
- Kikutani, T. Structure development in synthetic fiber production. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 1, pp. 157–180. [Google Scholar]
- Sumesh, P.; Mathur, T.; Agarwal, U.S. Simulation of polyester melt spinning with axial quench for increasing productivity. J. Appl. Polym. Sci. 2010, 116, 2541–2547. [Google Scholar] [CrossRef]
- Bobeth, W. Textile Faserstoffe: Beschaffenheit und Eigenschaften; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Loy, W. Chemiefasern für technische Textilprodukte: Standardtypen, Modifikationen, Einsatzgebiete; Deutscher Fachverlag: Frankfurt, Germany, 2008. [Google Scholar]
- Ziabicki, A.; Kawai, H. High-Speed Fiber Spinning: Science and Engineering Aspects; Krieger Publishing: Malabar, FL, USA, 1991. [Google Scholar]
- Nakajima, T. Advanced Fiber Spinning Technology; Woodhead Publishing: Cambridge, UK, 1994. [Google Scholar]
- Hatzikiriakos, S.G.; Migler, K.B. Overview of Processing Instabilities. In Polymer Processing Instabilities; Hatzikiriakos, S.G., Migler, K.B., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 1–12. [Google Scholar]
- Denn, M.M. Fifty years of non-Newtonian fluid dynamics. AIChE J. 2004, 50, 2335–2345. [Google Scholar] [CrossRef]
- Baird, D.G.; Collias, D.I. Polymer Processing: Principles and Design, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Denn, M.M. Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Dealy, J.M.; Kim, S. Gross Melt Fracture in Extrusion. In Polymer Processing Instabilities; Hatzikiriakos, S.G., Migler, K.B., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 207–236. [Google Scholar]
- Lenk, R.S. A unified concept of melt flow instability during extrusion. J. Appl. Polym. Sci. 1978, 22, 1781–1785. [Google Scholar] [CrossRef]
- Ziabicki, A. Effects of Molecular Weight on Melt Spinning and Mechanical Properties of High-Performance Poly(ethylene Terephthalate) Fibers. Text. Res. J. 1996, 66, 705–712. [Google Scholar] [CrossRef]
- Denn, M.M. Extrusion instabilities and wall slip. Annu. Rev. Fluid Mech. 2001, 33, 265–287. [Google Scholar] [CrossRef] [Green Version]
- Migler, K.B.; Son, Y.; Qiao, F.; Flynn, K. Extensional deformation, cohesive failure, and boundary conditions during sharkskin melt fracture. J. Rheol. 2002, 46, 383–400. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.J. Draw resonance in polypropylene melt spinning. Polym. Eng. Sci. 1987, 27, 192–201. [Google Scholar] [CrossRef]
- Leal, A.A.; Neururer, O.A.; Bian, A.; Gooneie, A.; Rupper, P.; Masania, K.; Dransfeld, C.; Hufenus, R. Interfacial interactions in bicomponent polymer fibers. Polymer 2018, 142, 375–386. [Google Scholar] [CrossRef]
- Tippetts, E. Fiber Engineering to Meet End Use Requirements1. Text. Res. J. 1967, 37, 524–533. [Google Scholar] [CrossRef]
- The Society of Fiber Science and Technology. High-Performance and Specialty Fibers: Concepts, Technology and Modern Applications of Man-Made Fibers for the Future; Springer: Tokyo, Japan, 2016. [Google Scholar]
- Hufenus, R.; Affolter, C.; Camenzind, M.; Reifler, F.A. Design and Characterization of a Bicomponent Melt-Spun Fiber Optimized for Artificial Turf Applications. Macromol. Mater. Eng. 2013, 298, 653–663. [Google Scholar] [CrossRef]
- Kikutani, T.; Arikawa, S.; Takaku, A.; Okui, N. Fiber structure formation in high-speed melt spinning of sheath-core type bicomponent fibers. Sen’I Gakkaishi 1995, 51, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Houis, S.; Schreiber, F.; Gries, T. Fiber Table: Bicomponent fibers (Part 1). Chem. Fibers Int. 2008, 58, 38–45. [Google Scholar]
- Houis, S.; Schreiber, F.; Gries, T. Fiber Table: Bicomponent fibers (Part 2). Chem. Fibers Int. 2008, 58, 158–165. [Google Scholar]
- Jeffries, R. Bicomponent Fibres; Merrow Publishing: Watford, UK, 1971. [Google Scholar]
- Oh, T.H. Melt spinning and drawing process of PET side-by-side bicomponent fibers. J. Appl. Polym. Sci. 2006, 101, 1362–1367. [Google Scholar]
- Prahsarn, C.; Klinsukhon, W.; Roungpaisan, N.; Srisawat, N. Self-crimped bicomponent fibers containing polypropylene/ethylene octene copolymer. Mater. Lett. 2013, 91, 232–234. [Google Scholar] [CrossRef]
- Robeson, L.M.; Axelrod, R.J.; Vratsanos, M.S.; Kittek, M.R. Microfiber formation: Immiscible polymer blends involving thermoplastic poly(vinyl alcohol) as an extractable matrix. J. Appl. Polym. Sci. 1994, 52, 1837–1846. [Google Scholar] [CrossRef]
- Prahsarn, C.; Matsubara, A.; Motomura, S.; Kikutani, T. Development of Bicomponent Spunbond Nonwoven Webs Consisting of Ultra-fine Splitted Fibers. Int. Polym. Process. 2008, 23, 178–182. [Google Scholar] [CrossRef]
- Mitsoulis, E. Secondary Flow Instabilities. In Polymer Processing Instabilities; Hatzikiriakos, S.G., Migler, K.B., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 43–71. [Google Scholar]
- Techtextil Messe Frankfurt. Available online: https://techtextil.messefrankfurt.com/frankfurt/de/profil.html (accessed on 31 July 2020).
- Zhang, D. Available online: https://www.nonwovens-industry.com/issues/2008-03/view_features/the-evolving-roles-of-nonwovens-in-technical-/ (accessed on 31 July 2020).
- Dauner, M.; Funk, A.; Rieger, C.; Hoss, M.; Planck, H. Entwicklung von Textilien aus schmelzgesponnenen 1 μm Super Mikrofilamenten; 22. Stuttgarter Kunststoff-Kolloquium: Stuttgart, Germany, 2011. [Google Scholar]
- Rieger, C.; Funk, A.; Hoss, M.; Dauner, M.; Plank, H. Special fiber structures through bicomponent technology. Chem. Fibers Int. 2010, 3, 162–163. [Google Scholar]
- Ranadajen, S.; Anand, S.C.; Rigby, A.J. Textiles for healthcare and medical applications. In Handbook of Technical Textiles, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 135–168. [Google Scholar]
- Gajjar, C.R.; King, M.W. Resorbable Fiber-Forming Polymers for Biotextile Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Banerjee, A.; Chatterjee, K.; Madras, G. Enzymatic degradation of polymers: A brief review. Mater. Sci. Technol. 2014, 30, 567–573. [Google Scholar] [CrossRef]
- Azevedo, H.S.; Reis, R.L. Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control Their Degradation Rate. In Biodegradable Systems in Tissue Engineering and Regenerative Medicine; Reis, R.L., Román, J.S., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 177–201. [Google Scholar]
- Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Dev. Ther. 2018, 12, 3117–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, R.; Padhye, R. Antimicrobial finishes for textiles. In Functional Finishes for Textiles; Paul, R., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 361–385. [Google Scholar]
- Bonaldi, R.R. Functional finishes for high-performance apparel. In High-Performance Apparel; McLoughlin, J., Sabir, T., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 129–156. [Google Scholar]
- Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Durán, N.; Durán, M.; De Jesus, M.B.; Seabra, A.B.; Favaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Chernousova, S.; Epple, M. ChemInform Abstract: Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew. Chem. Int. Ed. 2013, 52, 1636–1653. [Google Scholar] [CrossRef] [PubMed]
- Parida, D.; Simonetti, P.; Frison, R.; Bülbül, E.; Altenried, S.; Arroyo, Y.; Balogh-Michels, Z.; Caseri, W.; Ren, Q.; Hufenus, R.; et al. Polymer-assisted in-situ thermal reduction of silver precursors: A solventless route for silver nanoparticles-polymer composites. Chem. Eng. J. 2020, 389, 123983. [Google Scholar] [CrossRef]
- Schindler, W.D.; Hauser, P.J. Chemical Finishing of Textiles; Woodhead Publishing: Cambridge, UK, 2004. [Google Scholar]
- Li, Y. Conducting Polymers. In Organic Optoelectronic Materials; Li, Y., Ed.; Springer: Cham, Switzerland, 2015; pp. 23–50. [Google Scholar]
- Pham, T.; Bechtold, T. Conductive Fibers. In Handbook of Fibrous Materials; Hu, J., Kumar, B., Lu, J., Eds.; Wiley-VCH: Weinheim, Germany, 2020; Volume 1, pp. 233–262. [Google Scholar]
- Kim, B.; Koncar, V.; Devaux, E.; Dufour, C.; Viallier, P. Electrical and morphological properties of PP and PET conductive polymer fibers. Synth. Met. 2004, 146, 167–174. [Google Scholar] [CrossRef]
- Mirabedini, A.; Foroughi, J.; Wallace, G.G. Developments in conducting polymer fibres: From established spinning methods toward advanced applications. RSC Adv. 2016, 6, 44687–44716. [Google Scholar] [CrossRef] [Green Version]
- Hufenus, R.; Gooneie, A.; Sebastian, T.; Simonetti, P.; Geiger, A.; Parida, D.; Bender, K.; Schäch, G.; Clemens, F. Antistatic Fibers for High-Visibility Workwear: Challenges of Melt-Spinning Industrial Fibers. Materials 2020, 13, 2645. [Google Scholar] [CrossRef]
- Argyros, A. Structure, properties and characteristics of optical fibres. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 2, pp. 458–484. [Google Scholar]
- Bunge, C.A.; Beckers, M.; Lustermann, B. Basic principles of optical fibres. In Polymer Optical Fibres; Bunge, C.-A., Gries, T., Beckers, M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 47–118. [Google Scholar]
- Kremenáková, D.; Militky, J.; Mishra, R. Fibers for Optical Textiles. In Handbook of Fibrous Materials; Hu, J., Kumar, B., Lu, J., Eds.; Wiley-VCH: Weinheim, Germany, 2020; Volume 2, pp. 593–648. [Google Scholar]
- Beckers, M.; Schlüter, T.; Vad, T.; Gries, T.; Bunge, C.A. An overview on fabrication methods for polymer optical fibers. Polym. Int. 2015, 64, 25–36. [Google Scholar] [CrossRef]
- Ziemann, O.; Krauser, J.; Zamzow, P.E.; Daum, W. POF Handbook: Optical Short Range Transmission Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Sohn, I.-S.; Park, C.-W. Diffusion-Assisted Coextrusion Process for the Fabrication of Graded-Index Plastic Optical Fibers. Ind. Eng. Chem. Res. 2001, 40, 3740–3748. [Google Scholar] [CrossRef]
- Jakubowski, K.; Huang, C.-S.; Gooneie, A.; Boesel, L.F.; Heuberger, M.; Hufenus, R. Luminescent solar concentrators based on melt-spun polymer optical fibers. Mater. Des. 2020, 189, 108518. [Google Scholar] [CrossRef]
- Ishizawa, H. Optical Fibers. In Handbook of Fibrous Materials; Hu, J., Kumar, B., Lu, J., Eds.; Wiley-VCH: Weinheim, Germany, 2020; Volume 1, pp. 391–410. [Google Scholar]
- Sonnenschein, M.F. Hollow fiber microfiltration membranes from poly (ether ether ketone) (PEEK). J. Appl. Polym. Sci. 1999, 72, 175–181. [Google Scholar] [CrossRef]
- Demeuse, M.T. Production and applications of hollow fibers. In Handbook of Textile Fibre Structure; Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; Volume 2, pp. 485–499. Available online: https://www.sciencedirect.com/science/article/pii/B9781845697303500159 (accessed on 25 September 2020).
- Oh, T.H.; Lee, M.S.; Kim, S.Y.; Shim, H.J. Studies on melt-spinning process of hollow fibers. J. Appl. Polym. Sci. 1998, 68, 1209–1217. [Google Scholar] [CrossRef]
- Takarada, W.; Ito, H.; Kikutani, T.; Okui, N. Studies on high-speed melt spinning of noncircular cross-section fibers. I. Structural analysis of As-spun fibers. J. Appl. Polym. Sci. 2001, 80, 1575–1581. [Google Scholar] [CrossRef]
- Rwei, S.P. Formation of hollow fibers in the melt-spinning process. J. Appl. Polym. Sci. 2001, 82, 2896–2902. [Google Scholar] [CrossRef]
- Huang, Q.; Seibig, B.; Paul, D. Polycarbonate hollow fiber membranes by melt extrusion. J. Membr. Sci. 1999, 161, 287–291. [Google Scholar] [CrossRef]
- De Rovère, A.; Shambaugh, R.L. Melt-spun hollow fibers: Modeling and experiments. Polym. Eng. Sci. 2001, 41, 1206–1219. [Google Scholar] [CrossRef]
- Hufenus, R.; Gottardo, L.; Leal, A.A.; Zemp, A.; Heutschi, K.; Schuetz, P.; Meyer, V.R.; Heuberger, M. Melt-spun polymer fibers with liquid core exhibit enhanced mechanical damping. Mater. Des. 2016, 110, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Leal, A.A.; Naeimirad, M.; Gottardo, L.; Schuetz, P.; Zadhoush, A.; Hufenus, R. Microfluidic behavior in melt-spun hollow and liquid core fibers. Int. J. Polym. Mater. 2016, 65, 451–456. [Google Scholar] [CrossRef]
- Hufenus, R.; Heuberger, M.; Leal, A.A. Multifunctional liquid-core melt-spun filaments. Chem. Fibers Int. 2018, 68, 181–182. [Google Scholar]
Spinning Method | Material | Product |
melt-spinning | polymer or inorganic melt | filaments, staple fibers, textured yarns |
wet-spinning, dry-spinning | polymer solution | filaments, staple fibers |
gel-spinning | polymer gel (polymer and solvent) | filaments |
preform drawing | polymer or inorganic melt | filaments |
film-split spinning | polymer melt | slit-tape filaments |
spun-bonding, melt-blowing | polymer melt | nonwovens |
electrospinning, centrifuge spinning (force-spinning) | melt or solution of polymer or inorganic material | nonwovens |
flash-spinning | polymer solution | nonwovens |
Polymer | Density [g/cm3] | Tg [°C] | Tm [°C] | Td [°C] | TP | Res | ChR | AR | UV | FR |
---|---|---|---|---|---|---|---|---|---|---|
PA 6 | 1.14 | 50 | 225 | 387 | ++ | ++ | + | ++ | + | + |
PA 6.6 | 1.14 | 50 | 260 | 407 | ++ | ++ | + | ++ | + | + |
PET | 1.39 | 75 | 260 | 402 | ++ | + | + | + | + | + |
PBT | 1.33 | 50 | 220 | 373 | ++ | ++ | + | + | + | + |
PLA | 1.25 | 60 | 165 | 321 | + | + | + | - | + | + |
PP | 0.91 | −15 | 170 | 399 | ++ | - | ++ | + | - | - |
LDPE | 0.92 | −125 | 110 | 440 | + | - | ++ | - | - | - |
HDPE | 0.95 | −125 | 130 | 436 | ++ | - | ++ | + | - | - |
PVDF | 1.78 | −40 | 170 | 431 | - | ++ | ++ | - | ++ | ++ |
PEEK | 1.32 | 145 | 335 | 569 | ++ | ++ | ++ | ++ | ++ | ++ |
PPS | 1.34 | 85 | 285 | 494 | ++ | ++ | ++ | ++ | - | ++ |
PEI | 1.27 | 215 | - | 515 | ++ | ++ | ++ | ++ | ++ | ++ |
PMMA | 1.18 | 110 | - | 334 | - | + | - | + | ++ | - |
PC | 1.20 | 150 | - | 471 | - | + | - | - | ++ | + |
Type | Function | Examples |
---|---|---|
Processing aids | Antioxidant | Hindered phenols and amines, phosphites |
Hydrolysis stabilizer | Carbodiimide | |
Nucleating agent | Talcum powder, boron nitride, organic phosphate salts | |
Lubricant | Stearates, low molecular wax | |
Polymer processing aid | Fluoropolymers | |
Surfactant | Stearates, PEG | |
Enhancing additives | Plasticizer | Tributylcitrate, acetyltributylcitrate |
Chain extender | Difunctional acid derivatives, anhydrides and epoxides | |
UV-stabilizer | HALS, TiO2, ZnO, carbon black | |
Flame retardant | Phosphorous and halogen derivatives, HALS | |
Thermal protection | Zirconia | |
Functional additives | Colorant | Pigments and dyes, carbon black |
Delustrant | TiO2, ZnO, mica, optical brightening agents | |
Antistatic | Carbon black, carbon nanotubes, graphene, ZnO | |
Antimicrobial | TiO2, ZnO, Ag+, Cu2+, Zn2+, plant extracts, phenol | |
Water/oil repellent | Silicone and fluorine compounds |
Spinning Speed [m/min] | 2000 | 4000 | 6000 | 8000 |
---|---|---|---|---|
Ultimate tensile stress [MPa] | 140–220 | 290–470 | 440–570 | 430–500 |
Ultimate tensile stress [cN/tex] | 10–16 | 21–34 | 32–41 | 31–36 |
Ultimate tensile strain [%] | 200–250 | 110–125 | 45–65 | 25–35 |
Young’s modulus [GPa] | 2.1–2.8 | 3.5–6.1 | 8.2–9.5 | 11.5–12.8 |
Boiling water shrinkage [%] | 58–62 | 20–57 | 3–5 | 2–3 |
Birefringence Δn | 0.01 | 0.05 | 0.11 | 0.10–0.11 |
Degree of crystallinity [%] | 2–11 | 4–27 | 40–48 | 41–50 |
Application Field | Examples | Polyester | Polyamide | Polyolefin |
---|---|---|---|---|
Agrotech | Agriculture and horticulture (crop protection, fertilization), forestry, landscape gardening | + | ||
Buildtech | Textile architecture (membrane construction), scaffolding | + | + | |
Clothtech | Functional garments and shoes | + | + | + |
Geotech | Geotextiles (civil engineering, road & railroad construction) | + | + | |
Hometech | Domestic textiles (furnishing, carpets, drapery) | + | + | + |
Indutech | Filtration, silk-screen printing, lifting, conveying, fishery | + | + | + |
Medtech | Medical and hygiene products | + | + | + |
Mobiltech | Automobiles (tire cord, belts, airbags, carpets, upholstery, insulation), railways, aircraft, ships | + | + | + |
Oekotech | Recycling, waste disposal, environmental protection | + | + | |
Packtech | Packaging, carrier bags, ribbons | + | + | |
Protech | Protective clothing (safety workwear), property protection | + | + | |
Sporttech | Sports apparel, swimsuits, parachutes, climbing ropes, racket strings, artificial turf | + | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hufenus, R.; Yan, Y.; Dauner, M.; Kikutani, T. Melt-Spun Fibers for Textile Applications. Materials 2020, 13, 4298. https://doi.org/10.3390/ma13194298
Hufenus R, Yan Y, Dauner M, Kikutani T. Melt-Spun Fibers for Textile Applications. Materials. 2020; 13(19):4298. https://doi.org/10.3390/ma13194298
Chicago/Turabian StyleHufenus, Rudolf, Yurong Yan, Martin Dauner, and Takeshi Kikutani. 2020. "Melt-Spun Fibers for Textile Applications" Materials 13, no. 19: 4298. https://doi.org/10.3390/ma13194298
APA StyleHufenus, R., Yan, Y., Dauner, M., & Kikutani, T. (2020). Melt-Spun Fibers for Textile Applications. Materials, 13(19), 4298. https://doi.org/10.3390/ma13194298