Effects of Bonding Agents on Metal-Ceramic Bond Strength of Co-Cr Alloys Fabricated by Selective Laser Melting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation and Analysis of Bonding Agents
2.1.1. Specimen Preparation for Metal-Ceramic Bond Strength Tests
2.1.2. Analysis of Bonding Agent Surface
2.1.3. Application of Veneering Ceramic
2.2. Bond Strength Test and Characterization of the Co-Cr Metal and Ceramic Interface
2.2.1. Metal–Ceramic Bond Strength Test
2.2.2. Characterization of the Metal–Ceramic Interface
2.3. Statistical Analysis
3. Results
3.1. Analysis of Bonding Agent Surface
3.2. Metal–Ceramic Bond Strength and Characterization of the Metal–Ceramic Interface
3.2.1. Metal–Ceramic Bond Strength
3.2.2. Metal–Ceramic Interface Examination
3.2.3. Observation of the Fractured Surface
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Al Jabbari, Y.S. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: A review of the literature. J. Adv. Prosthodont. 2014, 6, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, R.; Travassos, A.C.; Neisser, M.P. Shear bond strengths of a ceramic system to alternative metal alloys. J. Prosthet. Dent. 2005, 93, 64–69. [Google Scholar] [CrossRef]
- Joias, R.; Tango, R.; DeAraujo, J.; DeAraujo, M.; De Siqueira Ferreira Anzaloni Saavedra, G.; De Arruda Paes-Junior, T.; Kimpara, E. Shear bond strength of a ceramic to Co-Cr alloys. J. Prosthet. Dent. 2008, 99, 54–59. [Google Scholar] [CrossRef]
- Bezzon, O.L.; Ribeiro, R.F.; Rollo, J.M.D.D.A.; Crosara, S.; Crosarad, S. Castability and resistance of ceramometal bonding in Ni-Cr and Ni-Cr-Be alloys. J. Prosthet. Dent. 2001, 85, 299–304. [Google Scholar] [CrossRef]
- Lacy, A.M. The chemical nature of dental porcelain. Dent. Clin. N. Am. 1977, 21, 661–667. [Google Scholar]
- Hofstede, T.M.; Ercoli, C.; Graser, G.N.; Tallents, R.H.; Moss, M.E.; Zero, D.T. Influence of metal surface finishing on porcelain porosity and beam failure loads at the metal-ceramic interface. J. Prosthet. Dent. 2000, 84, 309–317. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, N.; Yan, J.; Zeng, Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J. Prosthet. Dent. 2018, 120, 617–623. [Google Scholar] [CrossRef]
- McLean, J.W.; Hughes, T.H. The reinforcement of dental porcelain with ceramic oxides. Br. Dent. J. 1965, 119, 251–267. [Google Scholar]
- Sailer, I.; Fehér, A.; Filser, F.; Lüthy, H.; Gauckler, L.J.; Schärer, P.; Hämmerle, C.H.F. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int. 2006, 37, 685–693. [Google Scholar]
- Uusalo, E.K.; Lassila, V.P.; Yli-Urpo, A.U. Bonding of dental porcelain to ceramic-metal alloys. J. Prosthet. Dent. 1987, 57, 26–29. [Google Scholar] [CrossRef]
- Knap, F.J.; Ryge, G. Study of Bond Strength of Dental Porcelain Fused to Metal. J. Dent. Res. 1966, 45, 1047–1051. [Google Scholar] [CrossRef]
- Hong, J.-M.; Razzoog, M.E.; Lang, B.R. The effect of recasting on the oxidation layer of a palladium-silver porcelain alloy. J. Prosthet. Dent. 1988, 59, 420–425. [Google Scholar] [CrossRef]
- McLean, J.W. Ceramics in clinical dentistry. Br. Dent. J. 1988, 164, 310. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, C.; Liao, J.; Liu, L.; Ye, X.; Lin, S.; Ye, J.-T. Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting. J. Prosthet. Dent. 2016, 118, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Akova, T.; Ucar, Y.; Tukay, A.; Balkaya, M.C.; Brantley, W.A. Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dent. Mater. 2008, 24, 1400–1404. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, H.; Gai, X.; Wang, Y. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J. Prosthet. Dent. 2014, 111, 51–55. [Google Scholar] [CrossRef]
- McLean, J.W. The metal-ceramic restoration. Dent. Clin. N. Am. 1983, 27, 747–761. [Google Scholar]
- Sced, I.R.; McLean, J.W. The strength of metal-ceramic bonds with base metals containing chromium. A preliminary report. Br. Dent. J. 1972, 132, 232–234. [Google Scholar] [CrossRef]
- Özcan, I.; Uysal, H. Effects of silicon coating on bond strength of two different titanium ceramic to titanium. Dent. Mater. 2005, 21, 773–779. [Google Scholar] [CrossRef]
- Wang, R.R.; Welsch, G.; Monteiro, O. Silicon nitride coating on titanium to enable titanium-ceramic bonding. J. Biomed. Mater. Res. 1999, 46, 262–270. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Schneider, R.L.; Curtis, E.R.; Clancy, J.M. Tensile bond strength of acrylic resin denture teeth to a microwave- or heat-processed denture base. J. Prosthet. Dent. 2002, 88, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Sawada, T.; Schille, C.; Schweizer, E.; Scheideler, L.; Geis-Gerstorfer, J.; Rupp, F.; Spintzyk, S. Comparative Analysis of Mechanical Properties and Metal-Ceramic Bond Strength of Co-Cr Dental Alloy Fabricated by Different Manufacturing Processes. Materials 2018, 11, 1801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vásquez, V.Z.C.; Özcan, M.; Kimpara, E.T. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading. Dent. Mater. 2009, 25, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, G.H.L.; Nishioka, R.S.; Souza, R.O.D.A.E.; Michida, S.M.A.; Kojima, A.N.; Mesquita, A.M.M.; Buso, L. Influence of Surface Treatment on the Shear Bond Strength of Ceramics Fused to Cobalt-Chromium. J. Prosthodont. 2010, 19, 103–111. [Google Scholar] [CrossRef]
- Saito, A.; Komine, F.; Blatz, M.B.; Matsumura, H. A comparison of bond strength of layered veneering porcelains to zirconia and metal. J. Prosthet. Dent. 2010, 104, 247–257. [Google Scholar] [CrossRef]
- Al Hussaini, I.; Al Wazzan, K.A. Effect of surface treatment on bond strength of low-fusing porcelain to commercially pure titanium. J. Prosthet. Dent. 2005, 94, 350–356. [Google Scholar] [CrossRef]
- Vásquez, V.; Özcan, M.; Nishioka, R.; Souza, R.O.D.A.E.; Mesquita, A.; Pavanelli, C. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium. Dent. Mater. J. 2008, 27, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Homann, F.; Waddell, J.N.; Swain, M. Influence of water, loading rate and bonder on the adhesion of porcelain to titanium. J. Dent. 2006, 34, 485–490. [Google Scholar] [CrossRef]
- Shimoe, S.; Tanoue, N.; Yanagida, H.; Atsuta, M.; Koizumi, H.; Matsumura, H. Comparative strength of metal-ceramic and metal-composite bonds after extended thermocycling. J. Oral Rehabil. 2004, 31, 689–694. [Google Scholar] [CrossRef]
- Itinoche, K.M.; Özcan, M.; Bottino, M.A.; Oyafuso, D. Effect of mechanical cycling on the flexural strength of densely sintered ceramics. Dent. Mater. 2006, 22, 1029–1034. [Google Scholar] [CrossRef]
- Elekdag-Turk, S.; Turk, T.; Isci, D.; Ozkalayci, N. Thermocycling Effects on Shear Bond Strength of a Self-Etching Primer. Angle Orthod. 2008, 78, 351–356. [Google Scholar] [CrossRef]
- Botega, D.M.; Sanchez, J.L.L.; Mesquita, M.F.; Henriques, G.E.P.; Consani, R.L.X. Effects of Thermocycling on the Tensile Bond Strength of Three Permanent Soft Denture Liners. J. Prosthodont. 2008, 17, 550–554. [Google Scholar] [CrossRef]
- Ren, X.-W.; Zeng, L.; Wei, Z.-M.; Xin, X.-Z.; Wei, B.; Information, P.E.K.F.C. Effects of multiple firings on metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting. J. Prosthet. Dent. 2016, 115, 109–114. [Google Scholar] [CrossRef]
- Lenz, J.; Schwarz, S.; Schwickerath, H.; Sperner, F.; Schäfer, A. Bond strength of metal-ceramic systems in three-point flexure bond test. J. Appl. Biomater. 1995, 6, 55–64. [Google Scholar] [CrossRef]
- Tuna, S.H.; Pekmez, N.Ö.; Kürkçüoğlu, I. Corrosion resistance assessment of Co-Cr alloy frameworks fabricated by CAD/CAM milling, laser sintering, and casting methods. J. Prosthet. Dent. 2015, 114, 725–734. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Papadopoulos, T.; Agathopoulos, S. Effect of Bonding Agent on Metal-Ceramic Bond Strength between Co-Cr Fabricated with Selective Laser Melting and Dental Feldspathic Porcelain. J. Prosthodont. 2019, 28, 1029–1036. [Google Scholar] [CrossRef]
- Minesaki, Y.; Murahara, S.; Kajihara, Y.; Takenouchi, Y.; Tanaka, T.; Suzuki, S.; Minami, H. Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy. J. Adv. Prosthodont. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Lawaf, S.; Nasermostofi, S.; Afradeh, M.; Azizi, A. Comparison of the bond strength of ceramics to Co-Cr alloys made by casting and selective laser melting. J. Adv. Prosthodont. 2017, 9, 52–56. [Google Scholar] [CrossRef]
- Xiang, N.; Xin, X.-Z.; Chen, J.; Wei, B. Metal–ceramic bond strength of Co–Cr alloy fabricated by selective laser melting. J. Dent. 2012, 40, 453–457. [Google Scholar] [CrossRef]
- Bieniaś, J.; Surowska, B.; Stoch, A.; Matraszek, H.; Walczak, M. The influence of SiO2 and SiO2–TiO2 intermediate coatings on bond strength of titanium and Ti6Al4V alloy to dental porcelain. Dent. Mater. 2009, 25, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Kononen, M.; Kivilahti, J. Fusing of dental ceramics to titanium. J. Dent. Res. 2001, 80, 848–854. [Google Scholar] [CrossRef]
- Könönen, M.; Kivilahti, J. Bonding of low-fusing dental porcelain to commercially pure titanium. J. Biomed. Mater. Res. 1994, 28, 1027–1035. [Google Scholar] [CrossRef]
- Itin, V.I. Reaction of Stomatological Porcelain with Titanium and Titanium Nickelide during Sintering. Powder Met. Met. Ceram. 2001, 40, 236–241. [Google Scholar] [CrossRef]
- Zinelis, S.; Barmpagadaki, X.; Vergos, V.; Chakmakchi, M.; Eliades, G. Bond strength and interfacial characterization of eight low fusing porcelains to cp Ti. Dent. Mater. 2010, 26, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-Y.; Lai, C.-Y.; Almansoori, I.; Chiesa, M.; Almansouri, I. The evolution in graphitic surface wettability with first-principles quantum simulations: The counterintuitive role of water. Phys. Chem. Chem. Phys. 2018, 20, 22636–22644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Nono, M.; Barroso, J.J.; Castro, P. Mechanical behavior and microstructural analysis of alumina–titanium brazed interfaces. Mater. Sci. Eng. A 2006, 435, 602–605. [Google Scholar] [CrossRef]
- Ekren, O.; Ozkomur, A.; Ucar, Y. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength. J. Prosthet. Dent. 2017, 119, 481–487. [Google Scholar] [CrossRef]
Material | Material Type | Brand Name | Composition (wt%) | CTE (× 10−6 K−1) | Manufacturer |
---|---|---|---|---|---|
Co-Cr alloy | Metal ingots: casting | Star Loy C | Co 59.4%, Cr 24.5%, W 10%, Nb2%, V 2%, Other (Mo, Si, Fe) ≤ 1% | 14.6~14.9 | Dentsplysirona, PA, USA Scheftner dental alloys |
Metal powder: SLM | Starbond CoS powder | Co 59%, Cr 25%, W 9.5%, Mo 3.5%, Si 1%, Other (C,Mn,Fe,N) ≤ 1% | 14.4 | ||
Ceramic | Dental ceramic | Vintage MP powder | SiO2 55–60%, Al2O3 10–16%, | 13.6–15.2 | Shofu, Dental GmbH |
K2O 5–11%, Na2O 2–16% | Japan | ||||
Bonding agent | Metal bonding agent | Creation Willi Geller | proprietary | 13.3 | Hersteller, |
Meiningen, Austria | |||||
Matchmaker CTE buffer | proprietary | unmeasurable (≤14.4) | Davis Schottlander | ||
Letchworth, Herts, UK |
Pre-Heating Temperature (°C) | Drying Time (min) | Heating Rate (°C/min) | Final Temperature (°C) | Holding Time (min) | |
---|---|---|---|---|---|
Liner (primer) | 500 | 5 | 55 | 980 | 1 |
First opaque | 500 | 5 | 55 | 960 | 1 |
Second opaque | 500 | 5 | 55 | 940 | 1 |
Dentin | 500 | 5 | 55 | 920 | 1 |
Glaze (self-glaze) | 500 | 5 | 55 | 900 | 1 |
Mass Norm (%) | C | O | Na | Al | Si | K | Ti | Cr | Mn | Fe | W |
---|---|---|---|---|---|---|---|---|---|---|---|
Bonding agent A | 2.21 | 55.54 | 1.03 | 5.25 | 20.56 | 3.2 | 7.21 | 0 | 0 | 1.83 | 3.17 |
Bonding agent B | 1.44 | 46.53 | 0.98 | 4.33 | 16.08 | 2.85 | 21.16 | 0.84 | 1.01 | 2.37 | 2.41 |
Groups | Bond Strength (Mpa) | Passing Rate ≥ 25 Mpa (%) | p-Value |
---|---|---|---|
Casting | 32.21 ± 6.88 a | 75 | vs. SLM-fabricated with bonding agent A: 0.002 |
vs. SLM-fabricated with bonding agent B < 0.001 | |||
SLM-fabricated | 35.29 ± 6.57 a | 75 | vs. SLM-fabricated with bonding agent A: 0.027 |
without bonding agent | vs. SLM-fabricated with bonding agent B: 0.001 | ||
SLM-fabricated | 38.38 ± 8.11 b | 100 | vs. Casting group: 0.002 |
with bonding agent A | vs. SLM-fabricated without bonding agent: 0.027 | ||
SLM-fabricated | 42.56 ± 5.21 b | 100 | vs. Casting group < 0.001 |
with bonding agent B | vs. SLM-fabricated without bonding agent: 0.001 |
Groups | Mixed Failure | Cohesive Failure | Adhesive Failure | Mean Ceramic Fraction (%) |
---|---|---|---|---|
Casting | 2 | 1 | 17 | 19.6 ± 17.12 a |
SLM-fabricated without bonding agent | 8 | 0 | 12 | 20.4 ± 10.22 a |
SLM-fabricated with bonding agent A | 16 | 0 | 4 | 40.5 ± 18.77 b |
SLM-fabricated with bonding agent B | 14 | 6 | 0 | 59.65 ± 21.24 c |
Specimen Groups | O | Al | Si | Zr | Ti |
---|---|---|---|---|---|
Casting | 43.18 ± 1.00 | 7.53 ± 1.00 | 18.91 ± 0.84 | 5.23 ± 2.19 | 2.34 ± 4.84 |
SLM-fabricated without bonding agent | 37.69 ± 7.58 | 7.65 ± 1.13 | 16.37 ± 1.94 | 2.2 ± 3.01 | 3.04 ± 1.20 |
SLM-fabricated with bonding agent A | 53.32 ± 5.73 | 7.02 ± 1.61 | 17.21 ± 2.73 | 3.29 ± 0.56 | 2.53 ± 4.39 |
SLM-fabricated with bonding agent B | 49.18 ± 0.17 | 7.99 ± 2.33 | 22.56 ± 2.54 | 3.21 ± 1.44 | 5.8 ± 1.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.-Y.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y.; Kim, J.-G. Effects of Bonding Agents on Metal-Ceramic Bond Strength of Co-Cr Alloys Fabricated by Selective Laser Melting. Materials 2020, 13, 4322. https://doi.org/10.3390/ma13194322
Yoo S-Y, Kim S-K, Heo S-J, Koak J-Y, Kim J-G. Effects of Bonding Agents on Metal-Ceramic Bond Strength of Co-Cr Alloys Fabricated by Selective Laser Melting. Materials. 2020; 13(19):4322. https://doi.org/10.3390/ma13194322
Chicago/Turabian StyleYoo, Soo-Yoen, Seong-Kyun Kim, Seong-Joo Heo, Jai-Young Koak, and Joung-Gyu Kim. 2020. "Effects of Bonding Agents on Metal-Ceramic Bond Strength of Co-Cr Alloys Fabricated by Selective Laser Melting" Materials 13, no. 19: 4322. https://doi.org/10.3390/ma13194322
APA StyleYoo, S.-Y., Kim, S.-K., Heo, S.-J., Koak, J.-Y., & Kim, J.-G. (2020). Effects of Bonding Agents on Metal-Ceramic Bond Strength of Co-Cr Alloys Fabricated by Selective Laser Melting. Materials, 13(19), 4322. https://doi.org/10.3390/ma13194322