Toward the Growth of Self-Catalyzed ZnO Nanowires Perpendicular to the Surface of Silicon and Glass Substrates, by Pulsed Laser Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphological Properties—Effect of Seed Layer (SL)
3.2. Structural Properties
3.3. Optical Properties
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Law, M.; Greene, L.E.; Johnson, J.C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Unalan, H.E.; Hiralal, P.; Rupesinghe, N.; Dalal, S.; Milne, W.I.; Amaratunga, G.A.J. Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 2008, 19, 255608. [Google Scholar] [CrossRef] [PubMed]
- Park, W.I.; Yi, G.-C. Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN. Adv. Mater. 2004, 16, 87–90. [Google Scholar] [CrossRef]
- Lai, E.; Kim, W.; Yang, P. Vertical nanowire array-based light emitting diodes. Nano Res. 2008, 1, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.S.; Avouris, P.; Pan, Z.; Wang, Z.L. Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts. J. Phys. Chem. B 2003, 107, 659–663. [Google Scholar] [CrossRef]
- Yan, H.; Johnson, J.C.; Law, M.; He, R.; Knutsen, K.; McKinney, J.; Pham, J.; Saykally, R.J.; Yang, P. ZnO Nanoribbon Microcavity Lasers. Adv. Mater. 2003, 15, 1907–1911. [Google Scholar] [CrossRef]
- Lin, S.S.; Hong, J.-I.; Song, J.H.; Zhu, Y.; He, H.; Xu, Z.; Wei, Y.G.; Ding, Y.; Snyder, R.L.; Wang, Z.L. Phosphorus Doped Zn1-xMgxO Nanowire Arrays. Nano Lett. 2009, 9, 3877–3882. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Katiyar, A.; Srivastava, A. Tuning NBE emission and optical band gap of nanocrystalline ZnO thin films using Fe dopant. Mater. Today Proc. 2018, 5, 9089–9093. [Google Scholar] [CrossRef]
- Ginley, D.; Green, M.A.; Collins, R.T. Solar Energy Conversion Toward 1 Terawatt. MRS Bull. 2008, 33, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Hochbaum, A.I.; Yang, P. Semiconductor Nanowires for Energy Conversion. Chem. Rev. 2010, 110, 527–546. [Google Scholar] [CrossRef]
- Tian, B.; Kempa, T.J.; Lieber, C.M. Single nanowire photovoltaics. Chem. Soc. Rev. 2009, 38, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Ruebusch, D.J.; Rathore, A.A.; Kapadia, R.; Ergen, O.; Leu, P.W.; Javey, A. Challenges and prospects of nanopillar-based solar cells. Nano Res. 2009, 2, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Chen, J. Enhancing Solar Cell Efficiencies through 1-D Nanostructures. Nanoscale Res. Lett. 2008, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Wang, Y.-X.; Zhang, Q. Progress in perovskite solar cells based on ZnO nanostructures. Sol. Energy 2018, 163, 289–306. [Google Scholar] [CrossRef]
- Paul, S.; Sultana, J.; Karmakar, A.; Chattopadhyay, S. Effect of prolonged growth on the chemical bath deposited ZnO nanowires and consequent photovoltaic performance of n-ZnO NWs/p-CuO heterojunction solar cells. Mater. Today Proc. 2017, 4, 12496–12499. [Google Scholar] [CrossRef]
- Nayeri, F.D.; Akbarnejad, E.; Ghoranneviss, M.; Soleimani, E.A.; Hashemizadeh, S.A. Dye decorated ZnO-NWs /CdS-NPs heterostructures for efficiency improvement of quantum dots sensitized solar cell. Superlattices Microstruct 2016, 91, 244–251. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Z.; Zou, Y.; Dong, Y.; Liu, S.; Xue, J.; Xu, L.; Dong, Y.; Song, J. A low-dimension structure strategy for flexible photodetectors based on perovskite nanosheets/ZnO nanowires with broadband photoresponse. Sci. China Mater. 2019, 63, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Farooq, W.; Khan, M.; Akhtar, M.N.; Rehman, S.U.; Ahmad, N.; Khalid, M.; Atif, M.; Almutairi, M.A.; Irfan, M. Effect of ZnO Nanoparticles Coating Layers on Top of ZnO Nanowires for Morphological, Optical, and Photovoltaic Properties of Dye-Sensitized Solar Cells. Micromachines 2019, 10, 819. [Google Scholar] [CrossRef] [Green Version]
- Consonni, V.; Briscoe, J.; Karber, E.; Li, X.; Cossuet, T. ZnO nanowires for solar cells: A comprehensive review. Nanotechnology 2019, 30, 362001. [Google Scholar] [CrossRef]
- Liu, W.; Liang, Y.; Xu, H.; Wang, L.; Zhang, X.; Liu, Y.; Hark, S. Heteroepitaxial Growth and Spatially Resolved Cathodoluminescence of ZnO/MgZnO Coaxial Nanorod Arrays. J. Phys. Chem. C 2010, 114, 16148–16152. [Google Scholar] [CrossRef]
- Cao, B.Q.; Zúñiga-Pérez, J.; Czekalla, C.; Hilmer, H.; Lenzner, J.; Boukos, N.; Travlos, A.; Lorenz, M.; Grundmann, M. Tuning the lateral density of ZnO nanowire arrays and its application as physical templates for radial nanowire heterostructures. J. Mater. Chem. 2010, 20, 3848–3854. [Google Scholar] [CrossRef]
- Alvi, N.H.; Hassan, W.U.; Farooq, B.; Nur, O.; Willander, M. Influence of different growth environments on the luminescence properties of ZnO nanorods grown by the vapor–liquid–solid (VLS) method. Mater. Lett. 2013, 106, 158–163. [Google Scholar] [CrossRef]
- Warule, S.S.; Chaudhari, N.S.; Kale, B.B.; More, M.A. Novel sonochemical assisted hydrothermal approach towards the controllable synthesis of ZnO nanorods, nanocups and nanoneedles and their photocatalytic study. CrystEngComm 2009, 11, 2776. [Google Scholar] [CrossRef]
- Tu, N.; Trung, D.Q.; Kien, N.; Huy, P.; Nguyen, D. Effect of substrate temperature on structural and optical properties of ZnO nanostructures grown by thermal evaporation method. Phys. E Low Dimens. Syst. Nanostruct. 2017, 85, 174–179. [Google Scholar] [CrossRef]
- Butanovs, E.; Piskunov, S.; Zolotarjovs, A.; Polyakov, B. Growth and characterization of PbI2-decorated ZnO nanowires for photodetection applications. J. Alloys Compd. 2020, 825, 154095. [Google Scholar] [CrossRef]
- Tien, L.C.; Pearton, S.J.; Norton, D.; Ren, F. Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition. J. Mater. Sci. 2008, 43, 6925–6932. [Google Scholar] [CrossRef]
- Dikovska, A.; Pallotti, D.; Lettieri, S.; Atanasova, G.; Avdeev, G.; Maddalena, P.; Amoruso, S.; Nedyalkov, N. Growth mechanism of ZnO nanostructures produced by ultraviolet and visible laser ablation. Appl. Surf. Sci. 2017, 423, 977–982. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Leung, Y.H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef]
- Bazazi, S.; Arsalani, N.; Khataee, A.; Tabrizi, A.G. Comparison of ball milling-hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance. J. Ind. Eng. Chem. 2018, 62, 265–272. [Google Scholar] [CrossRef]
- Shahi, K.; Singh, R.S.; Singh, J.; Aleksandrova, M.; Singh, A.K. Synthesis of Ag Nanoparticle-Decorated ZnO Nanorods Adopting the Low-Temperature Hydrothermal Method. J. Electron. Mater. 2019, 49, 637–642. [Google Scholar] [CrossRef]
- Bourfaa, F.; Boutelala, A.; Aida, M.S.; Attaf, N.; Ocak, Y.S. Influence of Seed Layer Surface Position on Morphology and Photocatalysis Efficiency of ZnO Nanorods and Nanoflowers. J. Nanomater. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Tak, Y.; Park, D.; Yong, K. Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2006, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, B.S.; Dluzewski, P.; Kaszewski, J.; Wachnicki, L.; Gieraltowska, S.; Kurowska, B.; Godlewski, M. Ultra-fast epitaxial growth of ZnO nano/microrods on a GaN substrate, using the microwave-assisted hydrothermal method. Mater. Chem. Phys. 2018, 205, 16–22. [Google Scholar] [CrossRef]
- Bao, Y.; Gao, L.; Feng, C.; Ma, J.; Liu, C.; Zhang, W. A solvent-dependent fabrication of flower-like and hexagonally ring-like ZnO architectures in one minute. Arab. J. Chem. 2020, 13, 4035–4042. [Google Scholar] [CrossRef]
- Lee, J.; Park, K.; Kang, M.-I.; Park, I.-W.; Kim, S.-W.; Cho, W.K.; Han, H.S.; Kim, S. ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders. J. Cryst. Growth 2003, 254, 423–431. [Google Scholar] [CrossRef]
- Bhat, P.; Pradhan, U.U.; Kumar, S.N. Synthesis and Characterization of ZnO Nano Discs Using Wet Chemical Method for Sensing Applications. Mater. Today Proc. 2018, 5, 10763–10770. [Google Scholar] [CrossRef]
- Mia, M.N.H.; Habiba, U.; Pervez, M.F.; Kabir, H.; Nur, S.; Hossen, M.F.; Sen, S.K.; Hossain, M.K.; Iftekhar, M.A.; Rahman, M.M. Investigation of aluminum doping on structural and optical characteristics of sol–gel assisted spin-coated nano-structured zinc oxide thin films. Appl. Phys. A 2020, 126, 1–12. [Google Scholar] [CrossRef]
- Nakamura, D.; Matsumoto, T.; Kumeda, A.; Toya, K.; Okazaki, K.; Higashihata, M.; Okada, T. Synthesis of ZnO Nanowire Heterostructures by Laser Ablation and Their Photoluminescence. J. Laser Micro Nanoeng. 2011, 6, 23–25. [Google Scholar] [CrossRef]
- Sakano, T.; Tanaka, Y.; Nishimura, R.; Nedyalkov, N.N.; Atanasov, P.A.; Saiki, T.; Obara, M. Surface enhanced Raman scattering properties using Au-Coated ZnO nanorods grown by two-step, off-Axis pulsed laser deposition. J. Phys. D Appl. Phys. 2008, 41, 235304. [Google Scholar] [CrossRef]
- Inguva, S.; Vijayaraghavan, R.K.; McGlynn, E.; Mosnier, J.-P. High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates. Superlattices Microstruct. 2017, 101, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Dilova, T.; Atanasova, G.; Dikovska, A.O.; Nedyalkov, N. The effect of light irradiation on the gas-sensing properties of nanocomposites based on ZnO and Ag nanoparticles. Appl. Surf. Sci. 2020, 505, 144625. [Google Scholar] [CrossRef]
- Yang, K.; Li, B.; Zeng, G. Sb2Se3 thin film solar cells prepared by pulsed laser deposition. J. Alloys Compd. 2020, 821, 153505. [Google Scholar] [CrossRef]
- Svetlichnyi, V.; Shabalina, A.V.; Lapin, I.N.; Goncharova, D.; Nemoykina, A. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity. Appl. Surf. Sci. 2016, 372, 20–29. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Lotfy, V.F.; Mwafy, E.A.; Basta, A.H. Influence of coating by Cu and Ag nanoparticles via pulsed laser deposition technique on optical, electrical and mechanical properties of cellulose paper. J. Mol. Struct. 2020, 1203, 127472. [Google Scholar] [CrossRef]
- Hajjaji, A.; Rebhi, A.; Ka, I.; Trabelsi, K.; Gaidi, M.; Bessais, B.; El Khakani, M.A. Pulsed-laser-deposited lead sulfide nanoparticles based decoration of porous silicon layer as an effective passivation treatment for multicrystalline silicon. Appl. Surf. Sci. 2020, 505, 144590. [Google Scholar] [CrossRef]
- Labis, J.P.; Hezam, M.; Al-Anazi, A.; Al-Brithen, H.; Ansari, A.A.; El-Toni, A.M.; Enriquez, R.; Jacopin, G.; Alhoshan, M. Pulsed laser deposition growth of 3D ZnO nanowall network in nest-like structures by two-step approach. Sol. Energy Mater. Sol. Cells 2015, 143, 539–545. [Google Scholar] [CrossRef]
- Kawakami, M.; Hartanto, A.B.; Nakata, Y.; Okada, T. Synthesis of ZnO Nanorods by Nanoparticle Assisted Pulsed-Laser Deposition. Jpn. J. Appl. Phys. 2003, 42, L33–L35. [Google Scholar] [CrossRef]
- Gupta, V.; Bhattacharya, P.; Yuzyuk, Y.; Katiyar, R. Growth and Characterization of ZnO Nano-Rods on Si Substrate by Pulsed Laser Ablation. MRS Proc. 2004, 818. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, D.H.; Li, C.; Zhou, C.W. Laser Ablation Synthesis of Oxide Nanowires and their Properties. In Proceedings of the 3rd IEEE Conference on Nanotechnology: IEEE-NANO, San Francisco, CA, USA, 12–14 August 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 592–595. [Google Scholar]
- Agung, B.; Kawakami, M.; Nakata, Y.; Ning, X.; Okada, T. Stimulated emission from ZnO nanorods synthesized by pulsed-laser deposition. In Proceedings of the CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671), Taipei, Taiwan, 15–19 December 2003; Volume 2, p. 667. [Google Scholar] [CrossRef]
- Liu, W.Z.; Xu, H.Y.; Wang, L.; Li, X.H.; Liu, Y. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties. AIP Adv. 2011, 1, 022145. [Google Scholar] [CrossRef]
- Guo, R.; Matsumoto, M.; Matsumoto, T.; Higashihata, M.; Nakamura, D.; Okada, T. Aligned growth of ZnO nanowires by NAPLD and their optical characterizations. Appl. Surf. Sci. 2009, 255, 9671–9675. [Google Scholar] [CrossRef]
- Guo, R.; Nishimura, J.; Matsumoto, M.; Higashihata, M.; Nakamura, D.; Okada, T. Density-Controlled Growth of ZnO Nanowires Via Nanoparticle-Assisted Pulsed-Laser Deposition and Their Optical Properties. Jpn. J. Appl. Phys. 2008, 47, 741–745. [Google Scholar] [CrossRef]
- Mendelsberg, R.; Kerler, M.; Durbin, S.; Reeves, R.J. Photoluminescence behavior of ZnO nanorods produced by eclipse PLD from a Zn metal target. Superlattices Microstruct. 2008, 43, 594–599. [Google Scholar] [CrossRef]
- Kumarakuru, H.; Cherns, D.; Fuge, G.M. The growth of Al-doped ZnO nanorods on c-axis sapphire by pulsed laser deposition. Surf. Coatings Technol. 2011, 205, 5083–5087. [Google Scholar] [CrossRef]
- Lorenz, M.; Kaidashev, E.M.; Rahm, A.; Nobis, T.; Lenzner, J.; Wagner, G.; Spemann, D.; Hochmuth, H.; Grundmann, M. MgxZn1-xO (0 ≤ x < 0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition. Appl. Phys. Lett. 2005, 86, 143113. [Google Scholar] [CrossRef]
- Karnati, P.; Haque, A.; Taufique, M.F.N.; Ghosh, K. A Systematic Study on the Structural and Optical Properties of Vertically Aligned Zinc Oxide Nanorods Grown by High Pressure Assisted Pulsed Laser Deposition Technique. Nanomaterials 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- El Zein, B.; Boulfrad, S.; Jabbour, G.; Dogheche, E. Parametric study of self-forming ZnO Nanowall network with honeycomb structure by Pulsed Laser Deposition. Appl. Surf. Sci. 2014, 292, 598–607. [Google Scholar] [CrossRef]
- De La Mata, M.; Magen, C.; Gázquez, J.; Utama, M.I.B.; Heiss, M.; Lopatin, S.; Furtmayr, F.; Fernández-Rojas, C.J.; Peng, B.; Morante, J.R.; et al. Polarity Assignment in ZnTe, GaAs, ZnO, and GaN-AlN Nanowires from Direct Dumbbell Analysis. Nano Lett. 2012, 12, 2579–2586. [Google Scholar] [CrossRef]
- Rogers, D.J.; Sandana, V.E.; Teherani, F.H.; Razeghi, M.; Drouhin, H.J. Fabrication of Nanostructured Heterojunction LEDs Using Self-Forming Moth-Eye Type Arrays of n-ZnO Nanocones Grown on p-Si (111) Substrates by Pulsed Laser Deposition. Proc. SPIE 2009, 4, 7217. [Google Scholar]
- Liu, Z.; Ong, C.K.; Yu, T.; Shen, Z.X. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties. Appl. Phys. Lett. 2006, 88, 053110. [Google Scholar] [CrossRef]
- Liu, Z.; Ong, C. Synthesis and size control of ZnO nanorods by conventional pulsed-laser deposition without catalyst. Mater. Lett. 2007, 61, 3329–3333. [Google Scholar] [CrossRef]
- Ramamoorthy, K.; Sanjeeviraja, C.; Jayachandran, M.; Sankaranarayanan, K.; Misra, P.; Kukreja, L. Development of a novel high optical quality ZnO thin films by PLD for III–V opto-electronic devices. Curr. Appl. Phys. 2006, 6, 103–108. [Google Scholar] [CrossRef]
- Bruncko, J.; Michalka, M.; Kovac, J.; Vincze, A. A low-temperature limit for growth of ZnO nanowires by using of laser ablation processes. Appl. Phys. A 2020, 126, 305. [Google Scholar] [CrossRef]
- Lemlikchi, S.; Abdelli-Messaci, S.; Lafane, S.; Kerdja, T.; Guittoum, A.; Saad, M. Study of structural and optical properties of ZnO films grown by pulsed laser deposition. Appl. Surf. Sci. 2010, 256, 5650–5655. [Google Scholar] [CrossRef]
- Ajimsha, R.; Manoj, R.; Aneesh, P.M.; Jayaraj, M.K. Violet luminescence from ZnO nanorods grown by room temperature pulsed laser deposition. Curr. Appl. Phys. 2010, 10, 693–697. [Google Scholar] [CrossRef]
- Gupta, V.; Sreenivas, K. Chapter 4-Pulsed Laser Deposition of Zinc Oxide (ZnO). In Zinc Oxide Bulk, Thin Films and Nanostructures; Jagadish, C., Pearton, S., Eds.; Elsevier Science Ltd: Oxford, UK, 2006; pp. 85–174. [Google Scholar]
- Tang, Q.; Zhou, W.; Zhang, W.; Ou, S.; Jiang, K.; Yu, W.; Qian, Y. Size-Controllable Growth of Single Crystal In(OH)3and In2O3Nanocubes. Cryst. Growth Des. 2005, 5, 147–150. [Google Scholar] [CrossRef]
Substrate | Temp (°C) | Pressure (Torr) | Distance Between Target and Substrate (cm) | Diameter (nm) | Length (µm) | Ref |
---|---|---|---|---|---|---|
Sapphire (0001) | 600–700 | 1–5 | 2 | 300 | 6 | [47] |
Si (100) | 450–500 | 5 | 2.5 | 120–200 | 12 | [48] |
SiO2/Si/Au | 900 | 400 | - | 20 | 10 | [49] |
Sapphire (0001) | 600 | 5 | 2 | 300 | 6 | [50] |
Si (100) | 600–850 | 4.8–6.3 | 2.5 | 20–50 | 0.5–2 | [51] |
a-Sapphire c-Sapphire | 1000 | 260 | 1.5 | 200 | 0.5–3 | [52] |
c-Sapphire ZnO SL | 500–800 | 0.15–0.50 | 2.5 | 50–90 | Few µm | [26] |
Sapphire (0001) | - | 260 | 1.2–2.5 | 130–200 | 1.5–4 | [53] |
c-Sapphire | 600 | 0.1–0.2 | 5 | 150–200 | 0.9 | [54] |
Sapphire | 650 | 10−2 | 5 | - | - | [55] |
a-Sapphire c-Sapphire + Au | 870–950 | 18–150 | 0.5–3.5 | 150 | 1.5–20 | [56] |
n-doped 400 µm Si (111) | 500–600 | 0.225 | 3 | - | - | [57] |
Si(100) + ZnO Seed Layer | 380 | 5 | 6.5 | 50 ± 4 | 1.3 ± 0.12 | This work |
Si (100) + ZnO Seed Layer | 380 | 10 | 6.5 | 30 ± 3 | 0.6 ± 0.03 | This work |
Glass/ITO + ZnO Seed Layer | 380 | 5 | 6.5 | 360 ± 20 | 2.6 ± 0.4 | This work |
Sample | UV/Green | UV/Yellow |
---|---|---|
NWs at 5 Torr | 11.868 | 22 |
NWs at 10 Torr | 30.6 | 45.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElZein, B.; Yao, Y.; Barham, A.S.; Dogheche, E.; Jabbour, G.E. Toward the Growth of Self-Catalyzed ZnO Nanowires Perpendicular to the Surface of Silicon and Glass Substrates, by Pulsed Laser Deposition. Materials 2020, 13, 4427. https://doi.org/10.3390/ma13194427
ElZein B, Yao Y, Barham AS, Dogheche E, Jabbour GE. Toward the Growth of Self-Catalyzed ZnO Nanowires Perpendicular to the Surface of Silicon and Glass Substrates, by Pulsed Laser Deposition. Materials. 2020; 13(19):4427. https://doi.org/10.3390/ma13194427
Chicago/Turabian StyleElZein, Basma, Yingbang Yao, Ahmad S. Barham, Elhadj Dogheche, and Ghassan E. Jabbour. 2020. "Toward the Growth of Self-Catalyzed ZnO Nanowires Perpendicular to the Surface of Silicon and Glass Substrates, by Pulsed Laser Deposition" Materials 13, no. 19: 4427. https://doi.org/10.3390/ma13194427
APA StyleElZein, B., Yao, Y., Barham, A. S., Dogheche, E., & Jabbour, G. E. (2020). Toward the Growth of Self-Catalyzed ZnO Nanowires Perpendicular to the Surface of Silicon and Glass Substrates, by Pulsed Laser Deposition. Materials, 13(19), 4427. https://doi.org/10.3390/ma13194427