Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Aging Procedures
2.3. Rheological Characterization
2.4. Fatigue Resistance
2.5. Fourier-Transform Infrared (FTIR) Spectroscopy
2.6. SARA Fractionation
3. Results and Discussion
3.1. Master Curves
3.2. LAS Test
3.3. FTIR
3.4. SARA
4. Conclusions
- The unaged binder and the binder aged by NAAT showed no significant difference in terms of the values of dynamic shear modulus, phase angle, fatigue life, carbonyl index, sulfoxide index, and SARA fractions. These observations were verified for both asphalt binders (A and B). The findings indicate that the proposed NAAT procedure was effective in minimizing the impact of oxidative aging (even when they were subjected to high temperatures and for a prolonged period) and consequently prevented the binders from stiffening. In other words, no relevant thermal aging could be observed for either of the binders after NAAT procedure.
- The asphalt binders aged by RTFOT and OAAT aging procedures showed similar rheological and chemical results.
- In general, RTFOT + PAV aged binder present the highest values of stiffness and elasticity. However, the increment in elasticity due to the LTA was more evident for binder A than binder B, indicating its better fatigue and rutting performance when compared to binder B.
- Binder A presented a greater content of polar fractions (resins and asphaltenes) compared to binder B. The greater polarity results in a better association between polar molecules, thus higher stiffness when compared to binder B can be explained.
- The results of the rheological and chemical characterization showed that the NAAT aging procedure proposed in this study is effective to hinder the oxidation of the asphalt binders. This indicates that the NAAT method is a valuable tool to assess the individual effect that temperature and oxidation have on the aging of asphalt binders.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Butt, A.A.; Toller, S.; Birgisson, B. Life cycle assessment for the green procurement of roads: A way forward. J. Clean. Prod. 2015, 90, 163–170. [Google Scholar] [CrossRef]
- Hofko, B.; Handle, F.; Eberhardsteiner, L.; Hospodka, M.; Blab, R.; Füssl, J.; Grothe, H.; Information, R. Alternative Approach toward the Aging of Asphalt Binder. Transp. Res. Rec. J. Transp. Res. Board 2015, 2505, 24–31. [Google Scholar] [CrossRef]
- Trombulak, S.C.; Frissell, C.A. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conserv. Biol. 2000, 14, 18–30. [Google Scholar] [CrossRef]
- Bryce, J.; Brodie, S.; Parry, T.; Presti, D.L. A systematic assessment of road pavement sustainability through a review of rating tools. Resour. Conserv. Recycl. 2017, 120, 108–118. [Google Scholar] [CrossRef]
- Soderlund, M.; Muench, S.T.; Willoughby, K.; Uhlmeyer, J.; Weston, J. Green Roads: A sustainability rating system for roadways. In Proceedings of the 87 TRB Annual Meeting, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- Airey, G. State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. Int. J. Pavement Eng. 2003, 4, 165–176. [Google Scholar] [CrossRef]
- Petersen, J.C. Chapter 14 Chemical Composition of Asphalt as Related to Asphalt Durability. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 2000; Volume 40, pp. 363–399. [Google Scholar]
- Frolov, I.N.; Bashkirceva, N.Y.; Ziganshin, M.A.; Okhotnikova, E.S.; Firsin, A.A. The steric hardening and structuring of paraffinic hydrocarbons in bitumen. Pet. Sci. Technol. 2016, 34, 1675–1680. [Google Scholar] [CrossRef]
- Little, D.N.; Allen, D.H.; Bhasin, A. Modeling and Design of Flexible Pavements and Materials; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Masson, J.-F.; Collins, P.; Polomark, G. Steric Hardening and the Ordering of Asphaltenes in Bitumen. Energy Fuels 2005, 19, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Read, J.; Whiteoak, D.; Hunter, R.N. The Shell Bitumen Handbook; Thomas Telford: London, UK, 2003. [Google Scholar]
- Bell, C.A. Aging of Asphalt-Aggregate Systems; Summary Report; SHRP-A-305; Strategic Highway Research Program Publications: Washington, DC, USA, 1989. [Google Scholar]
- Petersen, J.C.; Harnsberger, P.M. Asphalt Aging: Dual Oxidation Mechanism and Its Interrelationships with Asphalt Composition and Oxidative Age Hardening. Transp. Res. Rec. J. Transp. Res. Board 1998, 1638, 47–55. [Google Scholar] [CrossRef]
- Petersen, J.C.; Glaser, R. Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Mater. Pavement Des. 2011, 12, 795–819. [Google Scholar] [CrossRef]
- Petersen, J.; Harnsberger, P.; Robertson, R. Factors affecting the kinetics and mechanisms of asphalt oxidation and the relative effects of oxidation products on age hardening. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem. 1996, 41, 1232–1244. [Google Scholar]
- Lu, X.; Isacsson, U. Effect of ageing on bitumen chemistry and rheology. Constr. Build. Mater. 2002, 16, 15–22. [Google Scholar] [CrossRef]
- Petersen, J.C. A review of the fundamentals of asphalt oxidation: Chemical, physicochemical, physical property, and durability relationships. Transp. Res. Circ. 2009. [Google Scholar] [CrossRef]
- Yu, J.; Feng, P.-C.; Zhang, H.-L.; Wu, S.-P. Effect of organo-montmorillonite on aging properties of asphalt. Constr. Build. Mater. 2009, 23, 2636–2640. [Google Scholar] [CrossRef]
- CEN. EN 1426: Bitumen and Bituminous Binders—Determination of Needle Penetration; European Committee for Standardization: Brussels, Belgium, 2015. [Google Scholar]
- CEN. EN 1427: Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method; European Committee for Standardization: Brussels, Belgium, 2015. [Google Scholar]
- CEN. EN 12607-1: Bitumen and Bituminous Binders—Determination of the Resistance to Hardening under Influence of Heat and Air—Part 1: RTFOT Method; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- CEN. EN 14769: Bitumen and Bituminous Binders—Accelerated Long-Term Ageing Conditioning by a Pressure Ageing Vessel (PAV); European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- Kim, Y.R. Modeling of Asphalt Concrete; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Mallick, R.B.; El-Korchi, T. Pavement Engineering: Principles and Practice; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Huang, S.-C. Rubber Concentrations on Rheology of Aged Asphalt Binders. J. Mater. Civ. Eng. 2008, 20, 221–229. [Google Scholar] [CrossRef]
- Marasteanu, M.O.; Anderson, D.A. Improved model for bitumen rheological characterization. In Eurobitume Workshop on Performance Related Properties for Bituminous Binders; European Bitumen Association: Brussels, Belgium, 1999. [Google Scholar]
- AASHTO. AASHTO TP 101-14: Standard Method of Test for Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep; American Association of State and Highway Transportation Officials: Washington, DC, USA, 2014. [Google Scholar]
- Schapery, R.A. Correspondence principles and a generalizedJ integral for large deformation and fracture analysis of viscoelastic media. Int. J. Fract. 1984, 25, 195–223. [Google Scholar] [CrossRef]
- Qiu, Y.; Ding, H.; Rahman, A.; Wang, W. Damage characteristics of waste engine oil bottom rejuvenated asphalt binder in the non-linear range and its microstructure. Constr. Build. Mater. 2018, 174, 202–209. [Google Scholar] [CrossRef]
- Salzer, R.; Siesler, H.W. Infrared and Raman Spectroscopic Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Stuart, B.H. Biological Applications of Infrared Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Sun, D.-W. Infrared Spectroscopy for Food Quality Analysis and Control. Infrared Spectrosc. Food Qual. Anal. Control 2009. [Google Scholar] [CrossRef]
- Larkin, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Bowers, B.F.; Huang, B.; Shu, X.; Miller, B.C. Investigation of Reclaimed Asphalt Pavement blending efficiency through GPC and FTIR. Constr. Build. Mater. 2014, 50, 517–523. [Google Scholar] [CrossRef]
- Feng, Z.-G.; Wang, S.-J.; Bian, H.-J.; Guo, Q.-L.; Li, X. FTIR and rheology analysis of aging on different ultraviolet absorber modified bitumens. Constr. Build. Mater. 2016, 115, 48–53. [Google Scholar] [CrossRef]
- Herrington, P.R. Thermal decomposition of asphalt sulfoxides. Fuel 1995, 74, 1232–1235. [Google Scholar] [CrossRef]
- Hofko, B.; Porot, L.; Cannone, A.F.; Poulikakos, L.; Huber, L.; Lu, X.; Mollenhauer, K.; Grothe, H. FTIR spectral analysis of bituminous binders: Reproducibility and impact of ageing temperature. Mater. Struct. 2018, 51. [Google Scholar] [CrossRef]
- Lamontagne, J.; Dumas, P.; Mouillet, V.; Kister, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel 1998, 77, 961–972. [Google Scholar] [CrossRef]
- Ongel, A.; Hugener, M. Impact of rejuvenators on aging properties of bitumen. Constr. Build. Mater. 2015, 94, 467–474. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Han, J. Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified asphalts. Constr. Build. Mater. 2011, 25, 129–137. [Google Scholar] [CrossRef]
- Hofko, B.; Alavi, M.Z.; Grothe, H.; Jones, D.; Harvey, J. Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders. Mater. Struct. 2017, 50, 187. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-C.; Grimes, W. Influence of Aging Temperature on Rheological and Chemical Properties of Asphalt Binders. Transp. Res. Rec. J. Transp. Res. Board 2010, 2179, 39–48. [Google Scholar] [CrossRef]
- Sakib, N.; Bhasin, A. Measuring polarity-based distributions (SARA) of bitumen using simplified chromatographic techniques. Int. J. Pavement Eng. 2018, 20, 1371–1384. [Google Scholar] [CrossRef]
- Sreeram, A.; Leng, Z.; Hajj, R.; Bhasin, A. Characterization of compatibility between aged and unaged binders in bituminous mixtures through an extended HSP model of solubility. Fuel 2019, 254, 115578. [Google Scholar] [CrossRef]
- Farrar, M.J.; Turner, T.F.; Planche, J.-P.; Schabron, J.F.; Harnsberger, P.M. Evolution of the crossover modulus with oxidative aging: Method to estimate change in viscoelastic properties of asphalt binder with time and depth on the road. Transp. Res. Rec. J. Transp. Res. Board 2013, 2370, 76–83. [Google Scholar] [CrossRef]
- Huang, W.; Lin, P.; Tang, N.; Hu, J.; Xiao, F. Effect of crumb rubber degradation on components distribution and rheological properties of Terminal Blend rubberized asphalt binder. Constr. Build. Mater. 2017, 151, 897–906. [Google Scholar] [CrossRef]
- Liu, F.; Wen, H. Prediction of Rheological and Damage Properties of Asphalt Binders that Result from Oxidative Aging. Transp. Res. Rec. J. Transp. Res. Board 2015, 2505, 92–98. [Google Scholar] [CrossRef]
- Ameri, M.; Nowbakht, S.; Molayem, M.; Mirabimoghaddam, M.H. A study on fatigue modeling of hot mix asphalt mixtures based on the viscoelastic continuum damage properties of asphalt binder. Constr. Build. Mater. 2016, 106, 243–252. [Google Scholar] [CrossRef]
- Ameri, M.; Seif, M.R.; Abbasi, M.; Khiavi, A.K. Viscoelastic fatigue resistance of asphalt binders modified with crumb rubber and styrene butadiene polymer. Pet. Sci. Technol. 2016, 35, 30–36. [Google Scholar] [CrossRef]
- Ashish, P.K.; Singh, D.; Bohm, S. Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder. Constr. Build. Mater. 2016, 113, 341–350. [Google Scholar] [CrossRef]
- Elkashef, M.; Williams, R.C. Improving fatigue and low temperature performance of 100% RAP mixtures using a soybean-derived rejuvenator. Constr. Build. Mater. 2017, 151, 345–352. [Google Scholar] [CrossRef]
- Mirabimoghadam, M.H.; Goli, A.; Molayem, M.; Ameri, M. Experimental study on the effect of nanosized carbon particles on fatigue resistance of asphalt binders. Pet. Sci. Technol. 2016, 34, 971–975. [Google Scholar] [CrossRef]
- Yu, J.; Ren, Z.; Yu, H.; Wang, D.; Svetlana, S.; Korolev, E.; Gao, Z.; Guo, F. Modification of Asphalt Rubber with Nanoclay towards Enhanced Storage Stability. Materials 2018, 11, 2093. [Google Scholar] [CrossRef] [Green Version]
- Kataware, A.V.; Singh, D. Evaluation of intermediate temperature cracking performance of warm mix additive modified asphalt binders. Constr. Build. Mater. 2018, 184, 165–176. [Google Scholar] [CrossRef]
- Elseifi, M.A.; Alvergue, A.; Mohammad, L.N.; Salari, S.; Aguiar-Moya, J.P.; Cooper, S.B. Rutting and Fatigue Behaviors of Shingle-Modified Asphalt Binders. J. Mater. Civ. Eng. 2016, 28, 04015113. [Google Scholar] [CrossRef]
- Singh, D.; Sawant, D. Understanding effects of RAP on rheological performance and chemical composition of SBS modified binder using series of laboratory tests. Int. J. Pavement Res. Technol. 2016, 9, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Shen, K.; Xu, G.; Tong, J.; Wang, R.; Cai, D.; Chen, X. Fatigue resistance of aged asphalt binders: An investigation of different analytical methods in linear amplitude sweep test. Constr. Build. Mater. 2020, 241, 118099. [Google Scholar] [CrossRef]
- Bennert, T.; Maher, A. Forensic study on the cracking of New Jersey’s long-term pavement performance specific pavement study sections. Transp. Res. Record 2013, 2371, 74–86. [Google Scholar] [CrossRef]
- Petersen, J.C. Quantitative functional group analysis of asphalts using differential infrared spectrometry and selective chemical reactions-theory and application. Transp. Res. Record 1986, 1096, 1–11. [Google Scholar]
- Xiang, L.; Cheng, J.; Kang, S. Thermal oxidative aging mechanism of crumb rubber/SBS composite modified asphalt. Constr. Build. Mater. 2015, 75, 169–175. [Google Scholar] [CrossRef]
- Yao, H.; Dai, Q.; You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087. [Google Scholar] [CrossRef]
- Zhang, R.; You, Z.; Wang, H.; Ye, M.; Yap, Y.K.; Si, C. The impact of bio-oil as rejuvenator for aged asphalt binder. Constr. Build. Mater. 2019, 196, 134–143. [Google Scholar] [CrossRef]
- Branthaver, J.F.; Petersen, J.; Robertson, R.; Duvall, J.; Kim, S.; Harnsberger, P.; Mill, T.; Ensley, E.; Barbour, F.; Scharbron, J. Binder Characterization and Evaluation; SHRP-A-368; Chemistry, Strategic Highway Research Program Publications: Washington, DC, USA, 1993. [Google Scholar]
- Michon, L.; Netzel, D.A.; Hanquet, B.; Martin, D.; Planche, J.-P. Carbon-13 molecular structure parameters of rtfot aged asphalts: Three proposed mechanisms for aromatization. Pet. Sci. Technol. 1999, 17, 369–381. [Google Scholar] [CrossRef]
- Herrington, P.R.; Patrick, J.E.; Ball, G.F.A. Oxidation of Roading Asphalts. Ind. Eng. Chem. Res. 1994, 33, 2801–2809. [Google Scholar] [CrossRef]
- Huang, S.-C.; Zeng, M. Characterization of aging effect on rheological properties of asphalt-filler systems. Int. J. Pavement Eng. 2007, 8, 213–223. [Google Scholar] [CrossRef]
- Dehouche, N.; Kaci, M.; Mokhtar, K.A. Influence of thermo-oxidative aging on chemical composition and physical properties of polymer modified bitumens. Constr. Build. Mater. 2012, 26, 350–356. [Google Scholar] [CrossRef]
- Isacsson, U.; Zeng, H. Relationships between bitumen chemistry and low temperature behaviour of asphalt. Constr. Build. Mater. 1997, 11, 83–91. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Wu, S. Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts. J. Hazard. Mater. 2010, 182, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Michalica, P.; Kazatchkov, I.B.; Stastna, J.; Zanzotto, L. Relationship between chemical and rheological properties of two asphalts of different origins. Fuel 2008, 87, 3247–3253. [Google Scholar] [CrossRef]
- Le Guern, M.; Chailleux, E.; Farcas, F.; Dreessen, S.; Mabille, I. Physico-chemical analysis of five hard bitumens: Identification of chemical species and molecular organization before and after artificial aging. Fuel 2010, 89, 3330–3339. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Q.; Guo, M.; Wang, D.; Oeser, M. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective. Constr. Build. Mater. 2018, 187, 718–729. [Google Scholar] [CrossRef]
- Xu, G.; Sha, A. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Zadshir, M.; Hosseinnezhad, S.; Fini, E.H. Deagglomeration of oxidized asphaltenes as a measure of true rejuvenation for severely aged asphalt binder. Constr. Build. Mater. 2019, 209, 416–424. [Google Scholar] [CrossRef]
- Qin, Q.; Schabron, J.F.; Boysen, R.B.; Farrar, M.J. Field aging effect on chemistry and rheology of asphalt binders and rheological predictions for field aging. Fuel 2014, 121, 86–94. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Ali, M. Studies on the aging behavior of the Arabian asphalts. Fuel 1999, 78, 1005–1015. [Google Scholar] [CrossRef]
- Gaestel, C.; Smadja, R.; Lamminan, K. Contribution à la connaissance des propriétés des bitumes routiers. Rev. Gentile. Routes Aérodromes 1971, 466, 85–94. [Google Scholar]
- Oliver, J.W. Changes in the chemical composition of Australian bitumens. Road Mater. Pavement Des. 2009, 10, 569–586. [Google Scholar] [CrossRef]
- Zadshir, M.; Oldham, D.J.; Hosseinnezhad, S.; Fini, E.H. Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation. Constr. Build. Mater. 2018, 190, 392–402. [Google Scholar] [CrossRef]
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef]
Binder Properties | Units | Binder A | Binder B | Specifications |
---|---|---|---|---|
Performance grade (PG) | – | 64–22 | 64–28 | – |
Penetration (25 °C) | 0.1 mm | 79 | 88 | EN 1426 [19] |
Softening point | °C | 47.2 | 45.0 | EN 1427 [20] |
Density (15 °C) | g/cm3 | 1.02 | 1.02 | – |
Asphalt Binder Aging State | Binder A | Binder B |
---|---|---|
Unaged binder | A_Unaged | B_Unaged |
NAAT aged binder | A_NAAT | B_NAAT |
OAAT aged binder | A_OAAT | B_OAAT |
RTFOT aged binder | A_RTFOT | B_RTFOT |
RTFOT + PAV aged binder | A_RTFOT + PAV | B_RTFOT + PAV |
Structural Group | Upper Wave Number Limit (cm−1) | Lower Wave Number Limit (cm−1) |
---|---|---|
Carbonyl | 1755 | 1640 |
Sulfoxide | 1060 | 984 |
Reference (aliphatic) | 1525 | 1355 |
Procedure | RTFOT | OAAT | NAAT |
---|---|---|---|
Temperature (°C) | 163 | 163 | 163 |
Thin-film thickness (mm) | 1.25 | 1.90 | 1.90 |
Duration (minutes) | 75 | 240 | 240 |
Aging atmosphere | Ambient air | Ambient air | Nitrogen |
Sample is submitted to continuous movement | Yes | No | No |
Binder | Parameter A | Parameter B |
---|---|---|
A_Unaged | 5.7 × 105 | −2.91 |
A_NAAT | 7.0 × 105 | −2.97 |
A_RTFOT | 2.4 × 106 | −3.47 |
A_OAAT | 1.9 × 106 | −3.36 |
A_RTFOT + PAV | 1.1 × 107 | −4.35 |
B_Unaged | 1.0 × 105 | −2.42 |
B_NAAT | 9.4 × 104 | −2.39 |
B_RTFOT | 2.7 × 105 | −2.76 |
B_OAAT | 2.3 × 105 | −2.73 |
B_RTFOT + PAV | 1.6 × 106 | −3.56 |
Wavenumber (cm−1) | Assignations |
---|---|
2919 | ν CH2 (aliphatic) |
2850 | ν CH2 (aliphatic) |
1693 | ν C=O (carbonyl) |
1600 | ν C=C (aromatic) |
1456 | δ CH2 (aliphatic) |
1375 | δ CH3 (aliphatic) |
1030 | ν S=O (sulfoxide) |
865 | ν CH (aromatic) |
810 | ν CH (aromatic) |
745 | ν CH (aromatic) |
721 | r CH2 (aliphatic) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo, I.G.d.N.; Hofko, B.; Mirwald, J.; Grothe, H. Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition. Materials 2020, 13, 4438. https://doi.org/10.3390/ma13194438
Camargo IGdN, Hofko B, Mirwald J, Grothe H. Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition. Materials. 2020; 13(19):4438. https://doi.org/10.3390/ma13194438
Chicago/Turabian StyleCamargo, Ingrid Gabrielle do Nascimento, Bernhard Hofko, Johannes Mirwald, and Hinrich Grothe. 2020. "Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition" Materials 13, no. 19: 4438. https://doi.org/10.3390/ma13194438
APA StyleCamargo, I. G. d. N., Hofko, B., Mirwald, J., & Grothe, H. (2020). Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition. Materials, 13(19), 4438. https://doi.org/10.3390/ma13194438