Topotactic Oxidation of Perovskites to Novel SrMo1-xMxO4−δ (M = Fe and Cr) Deficient Scheelite-Type Oxides
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Crystallographic Characterization
3.2. Thermal Analysis (TGA)
3.3. XPS Measurements
3.4. Topotactical Oxidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Abdalla, A.M.; Hossain, S.; Petra, P.M.; Ghasemi, M.; Azad, A.K. Achievements and trends of solid oxide fuel cells in clean energy field: A perspective review. Front. Energy 2018, 14, 359–382. [Google Scholar] [CrossRef]
- Martínez-Coronado, R.; Alonso, J.A.; Aguadero, A.; Fernández-Díaz, M. Optimized energy conversion efficiency in solid-oxide fuel cells implementing SrMo1−xFexO3−δ perovskites as anodes. J. Power Sources 2012, 208, 153–158. [Google Scholar] [CrossRef]
- Martínez-Coronado, R.; Aguadero, A.; Alonso, J.A.; Fernández-Díaz, M. Neutron diffraction and magnetic study of the low-temperature transitions in SrMo1−xFexO3−δ. Mater. Res. Bull. 2012, 47, 2148–2153. [Google Scholar] [CrossRef]
- Martinez-Coronado, R.; Alonso, J.A.; Aguadero, A.; Fernandez-Diaz, M.T. New SrMo1-xCrxO3-δ perovskites as anodes in solid-oxide fuel cells. Int. J. Hydrog. Energy 2014, 39, 4067–4073. [Google Scholar] [CrossRef]
- Martinez-Coronado, R.; Alonso, J.A.; Fernandez-Diaz, M.T. Low-temperature transitions in the SrMo1-xCrxO3-δ (x = 0.1 and 0.2) perovskite system. J. Alloys Compd. 2018, 607, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Brixner, L. X-ray study and electrical properties of system BaxSr(1−x)MoO3. J. Inorg. Nucl. Chem. 1960, 14, 225–230. [Google Scholar] [CrossRef]
- Wang, H.; Cui, D.; Zhou, Y.; Chen, Z.; Chen, F.; Zhao, T.; Lu, H.; Yang, G.; Xu, M.; Lan, Y.; et al. Growth and characterization of SrMoO3 thin films. J. Cryst. Growth 2001, 226, 261–266. [Google Scholar] [CrossRef]
- Sun, C.; Alonso, J.A.; Bian, J. Recent Advances in Perovskite-Type Oxides for Energy Conversion and Storage Applications. Adv. Energy Mater. 2020, 2000459, 1–21. [Google Scholar] [CrossRef]
- Ge, X.-M.; Chan, S.-H.; Liu, Q.-L.; Sun, Q. Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization. Adv. Energy Mater. 2012, 2, 1156–1181. [Google Scholar] [CrossRef]
- Faro, M.L.; Zignani, S.C.; Aricò, A.S. Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells. Materials 2020, 13, 3231. [Google Scholar] [CrossRef]
- Shu, L.; Sunarso, J.; Hashim, S.S.; Mao, J.; Zhou, W.; Liang, F. Advanced perovskite anodes for solid oxide fuel cells: A review. Int. J. Hydrog. Energy 2019, 44, 31275–31304. [Google Scholar] [CrossRef]
- Ishii, M.; Kobayashi, M. Single crystals for radiation detectors. Prog. Cryst. Growth Charact. Mater. 1992, 23, 245–311. [Google Scholar] [CrossRef]
- Faure, N.; Borel, C.; Couchaud, M.; Basset, G.; Templier, R.; Wyon, C. Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2. Appl. Phys. A 1996, 63, 593–598. [Google Scholar] [CrossRef]
- Angloher, G.; Bucci, C.; Cozzini, C.; Von Feilitzsch, F.; Frank, T.; Hauff, D.; Henry, S.; Jagemann, T.; Jochum, J.; Kraus, H.; et al. Cresst-II: Dark matter search with scintillating absorbers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detect. Assoc. Equip. 2004, 520, 108–111. [Google Scholar] [CrossRef]
- Paski, E.F.; Blades, M.W. Analysis of inorganic powders by time-wavelength resolved luminescence spectroscopy. Anal. Chem. 1988, 60, 1224–1230. [Google Scholar] [CrossRef]
- Sleight, A.W. Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1972, 28, 2899–2902. [Google Scholar] [CrossRef]
- Errandonea, D.; Kumar, R.S.; Ma, X.; Tu, C. High-pressure X-ray diffraction study of SrMoO4 and pressure-induced structural changes. J. Solid State Chem. 2008, 181, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Kaminskii, A.A.; Bagayev, S.N.; Ueda, K.-I.; Nishioka, H.; Kubota, Y.; Chen, X.; Kholov, A. Efficient Stimulated Raman Scattering in Tetragonal Laser Crystalline Hosts NaBi(MoO4)2 and NaBi(WO4)2. Jpn. J. Appl. Phys. 1995, 34, 1461–1463. [Google Scholar] [CrossRef]
- Basiev, T.; Sobol, A.; Zverev, P.; Ivleva, L.I.; Osiko, V.; Powell, R.C. Raman spectroscopy of crystals for stimulated Raman scattering. Opt. Mater. 1999, 11, 307–314. [Google Scholar] [CrossRef]
- Chauhan, A.K. Czochralski growth and radiation hardness of BaWO4 Crystals. J. Cryst. Growth. 2003, 254, 418–422. [Google Scholar] [CrossRef]
- Kay, M.I.; Frazer, B.C.; Almodovar, I. Neutron Diffraction Refinement of CaWO4. J. Chem. Phys. 1964, 40, 504–506. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Dong, H.-N.; Wei, W.-H. Investigations on the local structures and the EPR parameters for Er3+ in PbMoO4 and SrMoO4. J. Alloys Compd. 2004, 375, 39–43. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Wagner, C.D.; Davis, L.E.; Zeller, M.V.; Taylor, J.A.; Raymond, R.H.; Gale, L.H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1981, 3, 211. [Google Scholar] [CrossRef]
- Gürmen, E.; Daniels, E.; King, J.S. Crystal structure refinement of SrMoO4, SrWO4, CaMoO4, and BaWO4 by neutron diffraction. J. Chem. Phys. 1971, 55, 1093–1097. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Wells, A.F.; O’Brien, T.D. Structural Inorganic Chemistry. J. Phys. Chem. 1946, 50, 443. [Google Scholar] [CrossRef]
- Weakley, T.J.R.; Ylvisaker, E.R.; Yager, R.J.; Stephens, J.E.; Wiegel, R.D.; Mengis, M.; Bauer, M.R.; Wu, P.; Photinos, P.; Abrahams, S.C. Phase transitions in K2Cr2O7 and structural redeterminations of phase II. Acta Cryst. Sect. B Struct. Sci. 2004, 60, 705–715. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F. Handbook of X-ray Spectroscopy; Muilenberg, G.E., Ed.; Perkin-Elmer Corporation: Waltham, MA, USA, 1979. [Google Scholar]
SrMo0.9Fe0.1O4−δ | SrMo0.8Cr0.2O4−δ | |
---|---|---|
a (Å) | 5.3997(2) | 5.3735(2) |
b (Å) | 5.3997(2) | 5.3735(2) |
c (Å) | 12.0687(8) | 12.1476(5) |
V (Å3) | 352.94(3) | 350.98(4) |
Sr 4b (0, 1/4, 5/8) | – | – |
Biso (Å2) | 0.921(2) | 0.816(3) |
focc | 1.00 | 1.00 |
Mo,M 4a (0,1/4,1/8) | – | – |
Biso (Å2) | 0.813(3) | 0.639(2) |
Mo/M focc | 0.88(1)/0.12(1) | 0.78(1)/0.22(1) |
O 16f (x,y,z) | – | – |
x | 0.2378(3) | 0.2388(2) |
y | 0.1149(4) | 0.1199(3) |
z | 0.0432(2) | 0.0449(3) |
Biso (Å2) | 0.764(4) | 1.00(2) |
focc | 0.943(3) | 0.963(2) |
Reliability Factors | – | – |
χ2 | 3.90 | 3.09 |
Rp (%) | 3.21 | 2.95 |
Rwp (%) | 4.31 | 3.73 |
Rexp (%) | 2.20 | 2.15 |
RBragg (%) | 6.31 | 3.90 |
Selected Atomic Distances | SrMo0.9Fe0.1O4−δ | SrMo0.8Cr0.2O4−δ |
---|---|---|
Distances (Å) | – | – |
Sr–O (x4) | 2.6005(2) | 2.5917(2) |
(x4) | 2.6105(1) | 2.6208(4) |
<Sr–O> | 2.6055 | 2.6062 |
(Mo, M)–O (x4) | 1.8089(4) | 1.7892(3) |
Angles (°) | – | – |
O–(Mo, M)–O | 107.77(2) | 107.89(2) |
O–(Mo, M)\–O | 112.74(3) | 112.66(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascos, V.; Martínez-Coronado, R.; Fernández-Díaz, M.T.; Alonso, J.A. Topotactic Oxidation of Perovskites to Novel SrMo1-xMxO4−δ (M = Fe and Cr) Deficient Scheelite-Type Oxides. Materials 2020, 13, 4441. https://doi.org/10.3390/ma13194441
Cascos V, Martínez-Coronado R, Fernández-Díaz MT, Alonso JA. Topotactic Oxidation of Perovskites to Novel SrMo1-xMxO4−δ (M = Fe and Cr) Deficient Scheelite-Type Oxides. Materials. 2020; 13(19):4441. https://doi.org/10.3390/ma13194441
Chicago/Turabian StyleCascos, V., R. Martínez-Coronado, M. T. Fernández-Díaz, and J. A. Alonso. 2020. "Topotactic Oxidation of Perovskites to Novel SrMo1-xMxO4−δ (M = Fe and Cr) Deficient Scheelite-Type Oxides" Materials 13, no. 19: 4441. https://doi.org/10.3390/ma13194441
APA StyleCascos, V., Martínez-Coronado, R., Fernández-Díaz, M. T., & Alonso, J. A. (2020). Topotactic Oxidation of Perovskites to Novel SrMo1-xMxO4−δ (M = Fe and Cr) Deficient Scheelite-Type Oxides. Materials, 13(19), 4441. https://doi.org/10.3390/ma13194441