Ultralight Industrial Bamboo Residue-Derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of HCNF/APP/MTMS Aerogels
2.3. Characterization
2.3.1. Chemical Composition
2.3.2. Density
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Fourier Transform Infrared (FT-IR)
2.3.5. X-ray Diffraction (XRD)
2.3.6. Compressive Properties
2.3.7. Hydrophobicity and Contact Angle
2.3.8. Thermal Stability
2.3.9. Flammability and Cone Calorimetry
2.3.10. Thermal Conductivity
3. Results and Discussion
3.1. Characterization of HCNF, HCNF/APP, and APP/MTMS/HCNF Aerogels
3.2. Compressive Properties
3.3. Hydrolytic and Flame Resistance
3.4. Thermal Insulation Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajinipriya, M.; Nagalakshmaiah, M.; Robert, M.; Elkoun, S. Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustain. Chem. Eng. 2018, 6, 2807–2828. [Google Scholar] [CrossRef]
- Jonoobi, M.; Mathew, A.P.; Oksman, K. Producing Low-Cost Cellulose Nanofiber from Sludge as New Source of Raw Materials. Ind. Crop Prod. 2012, 40, 232–238. [Google Scholar] [CrossRef]
- Freitas, N.; Aurélio Pinheiro, J.; Brígida, A.; Saraiva Morais, J.P.; Filho, M.; Rosa, M. Fibrous Residues of Palm Oil as a Source of Green Chemical Building Blocks. Ind. Crop Prod. 2016, 94, 480–489. [Google Scholar] [CrossRef]
- Huang, C.; Ma, J.; Liang, C.; Li, X.; Yong, Q. Influence of Sulfur Dioxide-Ethanol-Water Pretreatment on the Physicochemical Properties and Enzymatic Digestibility of Bamboo Residues. Bioresour. Technol. 2018, 263, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Xin, D.; Yang, Z.; Liu, F.; Xu, X.; Zhang, J. Comparison of Aqueous Ammonia and Dilute Acid Pretreatment of Bamboo Fractions: Structure Properties and Enzymatic Hydrolysis. Bioresour. Technol. 2015, 175, 529–536. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An Overlooked Biomass Resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.; Lee, S.-H.; Toba, K.; Nagatani, A.; Endo, T. Bamboo Nanofiber Preparation by HCW and Grinding Treatment and Its Application for Nanocomposite. Wood Sci. Technol. 2012, 46, 393–403. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Jiang, Z.; Li, W.; Yu, Y. A Comparison Study on the Preparation of Nanocellulose Fibrils from Fibers and Parenchymal Cells in Bamboo (Phyllostachys Pubescens). Ind. Crop Prod. 2015, 71, 80–88. [Google Scholar] [CrossRef]
- Wang, H. Preparation, Characterization and Application of Nano Cellulose Fibrils from Bamboo. Ph.D Thesis, Chinese Academy of Forest Sciences, Beijing, China, 2013. [Google Scholar] [CrossRef]
- Kistler, S.S. Coherent Expanded Aerogels. J. Phys. Chem. 1932, 36, 52–64. [Google Scholar] [CrossRef]
- Lavoine, N.; Bergström, L. Nanocellulose-Based Foams and Aerogels: Processing, Properties, and Applications. J. Mater. Chem. A 2017, 5, 16105–16117. [Google Scholar] [CrossRef] [Green Version]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.L. Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate. ACS Appl. Mater. Interfaces 2017, 9, 2825–2834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granström, M.; Pääkkö, M.; Jin, H.; Kolehmainen, E.; Kilpeläinen, I.; Ikkala, O. Highly Water Repellent Aerogels Based on Cellulose Stearoyl Esters. Polym. Chem. 2011, 2, 1789–1796. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Vu, C.M.; Vu, H.T.; Choi, H.J. Micron-Size White Bamboo Fibril-Based Silane Cellulose Aerogel: Fabrication and Oil Absorbent Characteristics. Materials 2019, 12, 1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köklükaya, O.; Carosio, F.; Wågberg, L. Superior Flame-Resistant Cellulose Nanofibril Aerogels Modified with Hybrid Layer-by-Layer Coatings. ACS Appl. Mater. Interfaces 2017, 9, 29082–29092. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sánchez-Soto, M.; Maspoch, M.L. Polymer/Clay Aerogel Composites with Flame Retardant Agents: Mechanical, Thermal and Fire Behavior. Mater. Des. 2013, 52, 609–614. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Cai, Z.; Yan, N.; Liu, M.; Yu, Y. Highly Compressible and Hydrophobic Anisotropic Aerogels for Selective Oil/Organic Solvent Absorption. ACS Sustain. Chem. Eng. 2019, 7, 332–340. [Google Scholar] [CrossRef]
- Klemm, D.; Cranston, E.D.; Fischer, D.; Gama, M.; Kedzior, S.A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; et al. Nanocellulose as a Natural Source for Groundbreaking Applications in Materials Science: Today’s State. Mater. Today 2018, 21, 720–748. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.R.; Chattopadhyay, A.; Sharma, S.K.; Geng, L.; Amiralian, N.; Martin, D.; Hsiao, B.S. Nanocellulose from Spinifex as an Effective Adsorbent to Remove Cadmium(II) from Water. ACS Sustain. Chem. Eng. 2018, 6, 3279–3290. [Google Scholar] [CrossRef]
- Tanaka, R.; Saito, T.; Hänninen, T.; Ono, Y.; Hakalahti, M.; Tammelin, T.; Isogai, A. Viscoelastic Properties of Core-Shell-Structured, Hemicellulose-Rich Nanofibrillated Cellulose in Dispersion and Wet-Film States. Biomacromolecules 2016, 17, 2104–2111. [Google Scholar] [CrossRef]
- Fibrous Raw Material—Determination of Acid-Insoluble Lignin; GB/T 2677-8; State Bureau of Technical Supervision: Beijing, China, 1994.
- Fibrous Raw Material—Determination of Holocellulose; GB/T 2677-10; State Bureau of Technical Supervision: Beijing, China, 1995.
- Pulps—Determination of Alkali Resistance; GB/T 744; SAS/TC141: Tianjin, China, 2004.
- Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate; ISO 5660; ISO copyright office: Geneva, Switzerland, 2015.
- Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of Cellulose Nanofibers from Wood Using High-Intensity Ultrasonication Combined with Chemical Pretreatments. Carbohydr. Polym. 2011, 83, 1804–1811. [Google Scholar] [CrossRef]
- Behniafar, H.; Haghighat, S. Thermally Stable and Organosoluble Binaphthylene-Based Poly(Urea-ether-imide)s: One-Pot Preparation and Characterization. Polym. Adv. Technol. 2008, 19, 1040–1047. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Z.; Sèbe, G.; Wu, R.; Rivera Virtudazo, R.V.; Tingaut, P.; Koebel, M. Multiscale Assembly of Superinsulating Silica Aerogels Within Silylated Nanocellulosic Scaffolds: Improved Mechanical Properties Promoted by Nanoscale Chemical Compatibilization. Adv. Funct. Mater. 2015, 25, 2326–2334. [Google Scholar] [CrossRef]
- Yadav, M.; Liu, Y.; Chiu, F. Fabrication of Cellulose Nanocrystal/Silver/Alginate Bionanocomposite Films with Enhanced Mechanical and Barrier Properties for Food Packaging Application. Nanomaterials 2019, 9, 1523. [Google Scholar] [CrossRef] [Green Version]
- Malfait, W.J.; Jurányi, F.; Zhao, S.; Arreguin, S.A.; Koebel, M.M. Dynamics of Silica Aerogel’s Hydrophobic Groups: A Quasielastic Neutron Scattering Study. J. Phys. Chem. C 2017, 121, 20335–20344. [Google Scholar] [CrossRef]
- Wang, Y.T.; Liao, S.F.; Shang, K.; Chen, M.J.; Huang, J.Q.; Wang, Y.Z.; Schiraldi, D.A. Efficient Approach to Improving the Flame Retardancy of Poly(Vinyl Alcohol)/Clay Aerogels: Incorporating Piperazine-Modified Ammonium Polyphosphate. ACS Appl. Mater. Interfaces 2015, 7, 1780–1786. [Google Scholar] [CrossRef]
- Zhang, Z.; Tingaut, P.; Rentsch, D.; Zimmermann, T.; Sèbe, G. Controlled Silylation of Nanofibrillated Cellulose in Water: Reinforcement of a Model Polydimethylsiloxane Network. ChemSusChem 2015, 8, 2681–2690. [Google Scholar] [CrossRef]
- Yang, L.; Mukhopadhyay, A.; Jiao, Y.; Yong, Q.; Chen, L.; Xing, Y.; Hamel, J.; Zhu, H. Ultralight, Highly Thermally Insulating and Fire Resistant Aerogel by Encapsulating Cellulose Nanofibers with Two-Dimensional MoS2. Nanoscale 2017, 9, 11452–11462. [Google Scholar] [CrossRef]
- Wong, J.C.H.; Kaymak, H.; Brunner, S.; Koebel, M.M. Mechanical Properties of Monolithic Silica Aerogels Made from Polyethoxydisiloxanes. Microporous Mesoporous Mater. 2014, 183, 23–29. [Google Scholar] [CrossRef]
- Jiménez-Saelices, C.; Seantier, B.; Cathala, B.; Grohens, Y. Spray Freeze-Dried Nanofibrillated Cellulose Aerogels with Thermal Superinsulating Properties. Carbohydr. Polym. 2017, 157, 105–113. [Google Scholar] [CrossRef]
- Yadav, M.; Chiu, F.C. Cellulose Nanocrystals Reinforced κ-Carrageenan Based UV Resistant Transparent Bionanocomposite Films for Sustainable Packaging Applications. Carbohydr. Polym. 2019, 211, 181–194. [Google Scholar] [CrossRef]
- Shao, Z.-B.; Deng, C.; Tan, Y.; Chen, M.-J.; Chen, L.; Wang, Y.-Z. An Efficient Mono-Component Polymeric Intumescent Flame Retardant for Polypropylene: Preparation and Application. ACS Appl. Mater. Interfaces 2014, 6, 7363–7370. [Google Scholar] [CrossRef]
- Wang, L.; Wu, S.; Dong, X.; Wang, R.; Zhang, L.; Wang, J.; Zhong, J.; Wu, L.; Wang, X. A Pre-Constructed Graphene-Ammonium Polyphosphate Aerogel (GAPPA) for Efficiently Enhancing the Mechanical and Fire-Safety Performances of Polymers. J. Mater. Chem. A 2018, 6, 4449–4457. [Google Scholar] [CrossRef]
- Lazar, P.; Karlický, F.; Jurecka, P.; Kocman, M.; Otyepkova, E.; Safarova, K.; Otyepka, M. Adsorption of Small Organic Molecules on Graphene. J. Am. Chem. Soc. 2013, 135, 6372–6377. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Kobayashi, Y.; Saito, T.; Isogai, A. Partitioned Airs at Microscale and Nanoscale: Thermal Diffusivity in Ultrahigh Porosity Solids of Nanocellulose. Sci. Rep. 2016, 6, 20434. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem. Int. Ed. 2018, 57, 7580–7608. [Google Scholar] [CrossRef]
Sample | Lignin (%) | Holocellulose (%) | α-Cellulose (%) |
---|---|---|---|
Industrial bamboo residues | 22.70 ± 0.66 | 69.08 ± 0.22 | 39.09 ± 0.10 |
Samples | T30% 1 (°C) | TMAX 2 (°C) | Residual Mass 3(%) |
---|---|---|---|
HCNF | 298.26 | 329.87 | 13.03 |
HCNF/APP | 236.62 | 237.49 | 34.57 |
HCNF/APP/MTMS | 282.47 | 288.46 | 36.25 |
Samples | TTI (s) | pHRR (kW/m2) | TpHRR (s) | FIGRA (kW/s·m2) | THR (MJ/m2) | pSPR (m2/s) | TSP (m2) |
---|---|---|---|---|---|---|---|
HCNF | 0 1 | 466.6 | 20 | 23.30 | 6.9 | 0.024 | 0.18 |
HCNF/APP | 1 | 341.0 | 20 | 17.05 | 6.6 | 0.013 | 0.09 |
HCNF/AP-P/MTMS | 3 | 219.1 | 25 | 8.76 | 6.1 | 0.006 | 0.04 |
Samples | Temperature (°C) | Thermal Conductivity (W/m·K) | Standard Deviation | Specific Thermal Conductivity (W/m·K)/(kg/m3) |
---|---|---|---|---|
HCNF | 25 | 0.0285 | 0.0055 | 0.0024 |
HCNF/APP/MTMS | 25 | 0.0398 | 0.0014 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Yu, Y.; Qing, Y.; Zhang, X.; Cui, J.; Wang, H. Ultralight Industrial Bamboo Residue-Derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties. Materials 2020, 13, 477. https://doi.org/10.3390/ma13020477
Huang H, Yu Y, Qing Y, Zhang X, Cui J, Wang H. Ultralight Industrial Bamboo Residue-Derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties. Materials. 2020; 13(2):477. https://doi.org/10.3390/ma13020477
Chicago/Turabian StyleHuang, Hanxiao, Yunshui Yu, Yan Qing, Xiaofeng Zhang, Jia Cui, and Hankun Wang. 2020. "Ultralight Industrial Bamboo Residue-Derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties" Materials 13, no. 2: 477. https://doi.org/10.3390/ma13020477
APA StyleHuang, H., Yu, Y., Qing, Y., Zhang, X., Cui, J., & Wang, H. (2020). Ultralight Industrial Bamboo Residue-Derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties. Materials, 13(2), 477. https://doi.org/10.3390/ma13020477