Analysis of Tortuosity in Compacts of Ternary Mixtures of Spherical Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. DEM Simulations
2.3. Radical Voronoi Tessellation
2.4. Tortuosity Calculations
- All nodes, i.e., Voronoi cell vertices, are marked as unvisited and a set of unvisited nodes are created.
- A preliminary distance value is set to infinity for all nodes except the starting node for which it should be equal to zero. The starting node is set as a current node [67].
- The preliminary distances are calculated through the current node to all of its unvisited neighbors. The preliminary distance calculated lately is compared to the already assigned current value and then the smaller one is chosen and assigned to the node.
- When consideration of all the unvisited current node neighbors is completed, the current node is signed as a visited node and it is withdrawn from the list of unvisited nodes. Once the node appears on the visited list, the node will not be checked anymore.
- The algorithm is complete after the destination node is marked as the visited one. Otherwise, the next current node is chosen from the list of unvisited nodes as a node with the smallest preliminary distance and the cycle is repeated from the step 3.
3. Results and Discussion
3.1. Tortuosity Dependence on Parameters of Ternary Mixture
3.2. Dependence of Radical Voronoi Parameters on Ternary Mixture Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M. Exploits, advances and challenges benefiting beyond Li-ion battery technologies. J. Alloys Compd. 2020, 817, 153261. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.; Zheng, M.; Zhong, W.; Cao, G. Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes. Adv. Mater. 2018, 31, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 1–12. [Google Scholar] [CrossRef]
- Ellis, B.L.; Nazar, L.F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177. [Google Scholar] [CrossRef]
- Ma, L.; Hendrickson, K.E.; Wei, S.; Archer, L.A. Nanomaterials: Science and applications in the lithium-sulfur battery. Nano Today 2015, 10, 315–338. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, Y.; Bakenov, Z.; Chen, P. Electrochemical performance of lithium gel polymer battery with nanostructured sulfur/carbon composite cathode. Solid State Ion. 2013, 234, 40–45. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Qi, L. The development of silicon nanocomposite materials for Li-Ion secondary batteries. Open Mater. Sci. J. 2011, 5, 228–235. [Google Scholar] [CrossRef]
- Mukherjee, R.; Krishnan, R.; Lu, T.-M.; Koratkar, N. Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 2012, 1, 518–533. [Google Scholar] [CrossRef]
- Yan, Z.; Hara, S.; Shikazono, N. Effect of powder morphology on the microstructural characteristics of La0.6Sr0.4Co0.2Fe0.8O3 cathode: A Kinetic Monte Carlo investigation. Int. J. Hydrogen Energy 2017, 42, 12601–12614. [Google Scholar] [CrossRef]
- Zhang, D.; Bertei, A.; Tariq, F. Progress in 3D electrode microstructure modelling for fuel cells and batteries: Transport and electrochemical performance. Prog. Energy 2019, 1, 1–35. [Google Scholar] [CrossRef]
- Lim, C.; Yan, B.; Kang, H.; Song, Z.; Lee, W.C.; De Andrade, V.; De Carlo, F.; Yin, L.; Kim, Y.; Zhu, L. Analysis of geometric and electrochemical characteristics of lithium cobalt oxide electrode with different packing densities. J. Power Sources 2016, 328, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.R.; Cronin, J.S.; Barnett, S.A.; Harris, S.J. Measurement of three-dimensional microstructure in a LiCoO2 positive electrode. J. Power Sources 2011, 196, 3443–3447. [Google Scholar] [CrossRef]
- Chung, D.-W.; Shearing, P.R.; Brandon, N.P.; Harris, S.J.; Garcia, R.E. Particle Size Polydispersity in Li-Ion Batteries. J. Electrochem. Soc. 2014, 161, A422–A430. [Google Scholar] [CrossRef]
- Cooper, S.J.; Eastwood, D.S.; Gelb, J.; Damblanc, G.; Brett, D.J.L.; Bradley, R.S.; Withers, P.J.; Lee, P.D.; Marquis, A.J.; Brandon, N.P.; et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries. J. Power Sources 2014, 247, 1033–1039. [Google Scholar] [CrossRef]
- Miranda, D.; Gören, A.; Costa, C.M.; Silva, M.M.; Almeida, A.M.; Lanceros-Méndez, S. Theoretical simulation of the optimal relation between active material, binder and conductive additive for lithium-ion battery cathodes. Energy 2019, 172, 68–78. [Google Scholar] [CrossRef]
- Doyle, M.; Newman, J. Modeling the performance of rechargeable lithium-based cells: Design correlations for limiting cases. J. Power Sources 1995, 54, 46–51. [Google Scholar] [CrossRef]
- Martínez-Rosas, E.; Vasquez-Medrano, R.; Flores-Tlacuahuac, A. Modeling and simulation of lithium-ion batteries. Comput. Chem. Eng. 2011, 35, 1937–1948. [Google Scholar] [CrossRef]
- Shah, A.A.; Luo, K.H.; Ralph, T.R.; Walsh, F.C. Recent trends and developments in polymer electrolyte membrane fuel cell modelling. Electrochim. Acta 2011, 56, 3731–3757. [Google Scholar] [CrossRef]
- Shah, A.A.; Watt-Smith, M.J.; Walsh, F.C. A dynamic performance model for redox-flow batteries involving soluble species. Electrochim. Acta 2008, 53, 8087–8100. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Pham, H.; Park, J. A New Aspect of the Li Diffusion Enhancement Mechanism of Ultrathin Coating Layer on Electrode Materials. ACS Appl. Mater. Interfaces 2019, 11, 38719–38726. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Zhang, L. Finite Element Thermal Model and Simulation for a Cylindrical Li-Ion Battery. IEEE Access 2017, 5, 15372–15379. [Google Scholar] [CrossRef]
- Tang, M.; Albertus, P.; Newman, J. Two-Dimensional Modeling of Lithium Deposition during Cell Charging. J. Electrochem. Soc. 2009, 156, A390–A399. [Google Scholar] [CrossRef]
- Wu, J.; Srinivasan, V.; Xu, J.; Wang, C.Y. Newton-Krylov-Multigrid Algorithms for Battery Simulation. J. Electrochem. Soc. 2002, 149, A1342–A1348. [Google Scholar] [CrossRef]
- Chuang, C.; Singh, D.; Kenesei, P.; Almer, J.; Hryn, J.; Huff, R. Application of X-ray computed tomography for the characterization of graphite morphology in compact-graphite iron. Mater. Charact. 2018, 141, 442–449. [Google Scholar] [CrossRef]
- Faÿ-Gomord, O.; Soete, J.; Davy, C.A.; Janssens, N.; Troadec, D.; Cazaux, F.; Caline, B.; Swennen, R. Tight chalk: Characterization of the 3D pore network by FIB-SEM, towards the understanding of fluid transport. J. Pet. Sci. Eng. 2017, 156, 67–74. [Google Scholar] [CrossRef]
- Giménez, C.S.; Schilde, C.; Froböse, L.; Ivanov, S.; Kwade, A. Mechanical, Electrical, and Ionic Behavior of Lithium-Ion Battery Electrodes via Discrete Element Method Simulations. Energy Technol. 2020, 8, 1900180. [Google Scholar] [CrossRef]
- Giménez, C.S.; Finke, B.; Nowak, C.; Schilde, C.; Kwade, A. Structural and mechanical characterization of lithium-ion battery electrodes via DEM simulations. Adv. Powder Technol. 2018, 29, 2312–2321. [Google Scholar] [CrossRef]
- Delaney, G.W.; Di Matteo, T.; Aste, T. Combining tomographic imaging and DEM simulations to investigate the structure of experimental sphere packings. Soft Matter 2010, 6, 2992–3006. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Hara, S.; Shikazono, N. Towards a realistic prediction of sintering of solid oxide fuel cell electrodes: From tomography to discrete element and kinetic Monte Carlo simulations. Scr. Mater. 2018, 146, 31–35. [Google Scholar] [CrossRef]
- Kehrwald, D.; Shearing, P.R.; Brandon, N.P.; Sinha, P.K.; Harris, S.J. Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode. J. Electrochem. Soc. 2011, 158, A1393. [Google Scholar] [CrossRef]
- Soukup, K.; Schneider, P.; Šolcová, O. Comparison of Wicke-Kallenbach and Graham’s diffusion cells for obtaining transport characteristics of porous solids. Chem. Eng. Sci. 2008, 63, 1003–1011. [Google Scholar] [CrossRef]
- Jørgensen, P.S.; Hansen, K.V.; Larsen, R.; Bowen, J.R. Geometrical characterization of interconnected phase networks in three dimensions. J. Microsc. 2011, 244, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Iwai, H.; Shikazono, N.; Matsui, T.; Teshima, H.; Kishimoto, M.; Kishida, R.; Hayashi, D.; Matsuzaki, K.; Kanno, D.; Saito, M.; et al. Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique. J. Power Sources 2010, 195, 955–961. [Google Scholar] [CrossRef]
- Kishimoto, M.; Iwai, H.; Saito, M.; Yoshida, H. Quantitative Evaluation of Transport Properties of SOFC Porous Anode by Random Walk Process. ECS Trans. 2019, 2, 1887–1896. [Google Scholar] [CrossRef]
- Chueh, C.C.; Bertei, A.; Pharoah, J.G.; Nicolella, C. Effective conductivity in random porous media with convex and non-convex porosity. Int. J. Heat Mass Transf. 2014, 71, 183–188. [Google Scholar] [CrossRef]
- Hlushkou, D.; Svidrytski, A.; Tallarek, U. Tracer-Size-Dependent Pore Space Accessibility and Long-Time Diffusion Coefficient in Amorphous, Mesoporous Silica. J. Phys. Chem. C 2017, 121, 8416–8426. [Google Scholar] [CrossRef]
- Gostovic, D.; Smith, J.R.; Kundinger, D.P.; Jones, K.S.; Wachsman, E.D. Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid-State Lett. 2007, 10, 214–217. [Google Scholar] [CrossRef]
- Sobieski, W. The use of Path Tracking Method for determining the tortuosity field in a porous bed. Granul. Matter 2016, 18, 72. [Google Scholar] [CrossRef] [Green Version]
- Sobieski, W. Calculating the Binary Tortuosity in DEM-Generated Granular Beds. Processes 2020, 8, 1105. [Google Scholar] [CrossRef]
- Chung, D.W.; Ebner, M.; Ely, D.R.; Wood, V.; García, R.E. Validity of the Bruggeman relation for porous electrodes. Model. Simul. Mater. Sci. Eng. 2013, 21, 074009. [Google Scholar] [CrossRef]
- Trogadas, P.; Taiwo, O.O.; Tjaden, B.; Neville, T.P.; Yun, S.; Parrondo, J.; Ramani, V.; Coppens, M.-O.; Brett, D.J.L.; Shearing, P.R. X-ray micro-tomography as a diagnostic tool for the electrode degradation in vanadium redox flow batteries. Electrochem. Commun. 2014, 48, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Richard, P.; Oger, L.; Lemaître, J.; Samson, L.; Medvedev, N.N. Application of the Voronoï tessellation to study transport and segregation of grains inside 2D and 3D packings of spheres. Granul. Matter 1999, 1, 203–211. [Google Scholar] [CrossRef]
- Semeykina, V.S.; Malkovich, E.G.; Bazaikin, Y.V.; Lysikov, A.I.; Parkhomchuk, E.V. Optimal catalyst texture in macromolecule conversion: A computational and experimental study. Chem. Eng. Sci. 2018, 188, 1–10. [Google Scholar] [CrossRef]
- Ng, T.T.; Ge, L. Packing void ratios of very dense ternary mixtures of similar ellipsoids. Granul. Matter 2020, 22, 1–13. [Google Scholar] [CrossRef]
- Richard, P.; Oger, L.; Troadec, J.P.; Gervois, A. Tessellation of binary assemblies of spheres. Phys. A Stat. Mech. Appl. 1998, 259, 205–221. [Google Scholar] [CrossRef]
- Richard, P.; Oger, L.; Troadec, J.P.; Gervois, A. A model of binary assemblies of spheres. Eur. Phys. J. E 2001, 6, 295–303. [Google Scholar] [CrossRef]
- Park, J.; Shibutani, Y. Weighted Voronoi tessellation technique for internal structure of metallic glasses. Intermetallics 2007, 15, 187–192. [Google Scholar] [CrossRef]
- Gervois, A.; Oger, L.; Troadec, J.P. Random cuts in binary mixtures of spheres. Phys. Rev. E 2004, 70, 031112. [Google Scholar] [CrossRef] [Green Version]
- Wiącek, J.; Stasiak, M. Effect of the particle size ratio on the structural properties of granular mixtures with discrete particle size distribution. Granul. Matter 2018, 20, 31. [Google Scholar] [CrossRef] [Green Version]
- Wiącek, J.; Stasiak, M.; Kafashan, J. Structural and Micromechanical Properties of Ternary Granular Packings: Effect of Particle Size Ratio and Number Fraction of Particle Size Classes. Materials 2020, 13, 339. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.Y.; Dong, K.J.; Zou, R.P.; Yu, A.B. Coordination number of the packing of ternary mixture of spheres: DEM simulations versus measurements. Ind. Eng. Chem. Res. 2011, 50, 8773–8785. [Google Scholar] [CrossRef]
- Gellatly, B.J.; Finney, J.L. Characterisation of models of multicomponent amorphous metals: The radical alternative to the Voronoi polyhedron. J. Non Cryst. Solids 1982, 50, 313–329. [Google Scholar] [CrossRef]
- Medvedev, N.N. Application of the Voronoi-Delone method to description of structure of intersphere space in polydisperse systems. In Doklady Physical Chemistry; Consultants Bureau: New York, NY, USA, 1994; Volume 337, pp. 157–161. [Google Scholar]
- Yi, L.Y.; Dong, K.J.; Zou, R.P.; Yu, A.B. Radical tessellation of the packing of ternary mixtures of spheres. Powder Technol. 2012, 224, 129–137. [Google Scholar] [CrossRef]
- Dong, K.; Wang, C.; Yu, A. Voronoi analysis of the packings of non-spherical particles. Chem. Eng. Sci. 2016, 153, 330–343. [Google Scholar] [CrossRef]
- Chen, L.; Wang, C.; Moscardini, M.; Kamlah, M.; Liu, S. A DEM-based heat transfer model for the evaluation of effective thermal conductivity of packed beds filled with stagnant fluid: Thermal contact theory and numerical simulation. Int. J. Heat Mass Transf. 2019, 132, 331–346. [Google Scholar] [CrossRef]
- Rycroft, C. Voro++: A Three-Dimensional Voronoi Cell Library in C++; Lawrence Berkeley National Lab (LBNL): Berkeley, CA, USA, 2009; No. LBNL-1432E. [Google Scholar] [CrossRef] [Green Version]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 1979, 30, 331–336. [Google Scholar] [CrossRef] [Green Version]
- LIGGGHTS®-PUBLIC Documentation, Version 3.X, © Copyright 2016, DCS Computing GmbH, JKU Linz and Sandia Corporation. Available online: https://www.cfdem.com/media/DEM/docu/Manual.html (accessed on 3 September 2020).
- Lotfabad, E.M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W.P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129. [Google Scholar] [CrossRef]
- Akhmetov, Z.; Boribayeva, A.; Berkinova, Z.; Yermukhambetova, A.; Golman, B. Microstructural features of ternary powder compacts. Chem. Eng. Trans. 2019, 74, 385–390. [Google Scholar] [CrossRef]
- Lommen, S.; Schott, D.; Lodewijks, G. DEM speedup: Stiffness effects on behavior of bulk material. Particuology 2014, 12, 107–112. [Google Scholar] [CrossRef]
- Lommen, S.; Mohajeri, M.; Lodewijks, G.; Schott, D. DEM particle upscaling for large-scale bulk handling equipment and material interaction. Powder Technol. 2019, 352, 273–282. [Google Scholar] [CrossRef]
- Ramírez-Aragón, C.; Ordieres-Meré, J.; Alba-Elías, F.; González-Marcos, A. Comparison of Cohesive Models in EDEM and LIGGGHTS for Simulating Powder Compaction. Materials 2018, 11, 2341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjaden, B.; Brett, D.J.; Shearing, P.R. Tortuosity in electrochemical devices: A review of calculation approaches. Int. Mater. Rev. 2018, 63, 47–67. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, E. A note on two problems in connexion with graphs. Numer. Math. 1959, 1269–1271. [Google Scholar] [CrossRef] [Green Version]
- Gass, S.I.; Fu, M.C. Encyclopedia of Operations Research and Management Science; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Mota, M.; Teixeira, J.; Yelshin, A. Image analysis of packed beds of spherical particles of different sizes. Sep. Purif. Technol. 1999, 15, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Dias, R.P.; Mota, M.; Teixeira, J.A.; Yelshin, A. Study of ternary glass spherical particle beds: Porosity, tortuosity, and permeability. Filtration 2005, 68–75. Available online: http://hdl.handle.net/10198/7037 (accessed on 3 September 2020).
- Ahamad, S.; Gupta, A. A systematic study of kinetics in mesocarbonmicrobeads anodes in presence of nano-conductive additives. Electrochim. Acta 2019, 297, 916–928. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
Mechanical Properties | |
---|---|
Particle density, ρ (kg/m3) | 2500 |
Poisson ratio, σ | 0.45 |
Young’s modulus, Y (N/m2) | 5 × 106 |
Particle Radii (cm) 1:2:4 | # | Volume Fraction (%) | Particle Radii (cm) 1:2:6 | # | Volume Fraction (%) | Particle Radii (cm) 1:2:8 | # | Volume Fraction (%) | ||||||
s | m | L | s | m | L | s | m | L | ||||||
1 | 5 | 5 | 90 | 6 | 5 | 5 | 90 | 11 | 5 | 5 | 90 | |||
2 | 15 | 15 | 70 | 7 | 15 | 15 | 70 | 12 | 15 | 15 | 70 | |||
3 | 25 | 25 | 50 | 8 | 25 | 25 | 50 | 13 | 25 | 25 | 50 | |||
4 | 35 | 35 | 30 | 9 | 35 | 35 | 30 | 14 | 35 | 35 | 30 | |||
5 | 45 | 45 | 10 | 10 | 45 | 45 | 10 | 15 | 45 | 45 | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zharbossyn, A.; Berkinova, Z.; Boribayeva, A.; Yermukhambetova, A.; Golman, B. Analysis of Tortuosity in Compacts of Ternary Mixtures of Spherical Particles. Materials 2020, 13, 4487. https://doi.org/10.3390/ma13204487
Zharbossyn A, Berkinova Z, Boribayeva A, Yermukhambetova A, Golman B. Analysis of Tortuosity in Compacts of Ternary Mixtures of Spherical Particles. Materials. 2020; 13(20):4487. https://doi.org/10.3390/ma13204487
Chicago/Turabian StyleZharbossyn, Assem, Zhazira Berkinova, Aidana Boribayeva, Assiya Yermukhambetova, and Boris Golman. 2020. "Analysis of Tortuosity in Compacts of Ternary Mixtures of Spherical Particles" Materials 13, no. 20: 4487. https://doi.org/10.3390/ma13204487
APA StyleZharbossyn, A., Berkinova, Z., Boribayeva, A., Yermukhambetova, A., & Golman, B. (2020). Analysis of Tortuosity in Compacts of Ternary Mixtures of Spherical Particles. Materials, 13(20), 4487. https://doi.org/10.3390/ma13204487