Effect of Zr Microalloying on the Microstructures and Strengthening Mechanism of As-Cast Al-Fe-Zr Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Zr Content on As-Cast Microstructures and Phase Composition
3.2. Effect of Zr Content on As-Cast Tensile Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liang, D.; Korgul, P.; Jones, H. Composition and solidification microstructure selection in the interdendritic matrix between primary Al3Fe dendrites in hypereutectic AlFe alloys. Acta Mater. 1996, 44, 2999–3004. [Google Scholar] [CrossRef]
- Chen, J.; Lengsdorf, R.; Henein, H.; Herlach, D.M.; Dahlborg, U.; Calvo-Dahlborg, M. Microstructure evolution in undercooled Al–8wt%Fe melts: Comparison between terrestrial and parabolic flight conditions. J. Alloy. Compd. 2013, 556, 243–251. [Google Scholar] [CrossRef]
- Shuai, G.; Li, Z.; Zhang, D.; Tong, Y.; Li, L. The mechanical property and electrical conductivity evolution of Al–Fe alloy between room temperature and elevated temperature ECAP. Vacuum 2020, 109813. [Google Scholar] [CrossRef]
- Jiang, H.; Li, S.; Zheng, Q.; Zhang, L.; He, J.; Song, Y.; Deng, C.; Zhao, J. Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al-Fe alloys. Mater. Des. 2020, 195, 108991. [Google Scholar] [CrossRef]
- Chankitmunkong, S.; Eskin, D.G.; Limmaneevichitr, C. Structure refinement, mechanical properties and feasibility of deformation of hypereutectic Al–Fe–Zr and Al–Ni–Zr alloys subjected to ultrasonic melt processing. Mater. Sci. Eng. A 2020, 788, 139567. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, W.; Zheng, X.; Zhao, Y.; Lou, Z.; Zhang, W. Developing high performance mechanical properties at elevated temperature in squeeze cast Al-Cu-Mn-Fe-Ni alloys. Mater. Charact. 2019, 150, 128–137. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, Z.; Cui, X.; Wu, Y.; Liu, X. Optimizing microstructures of dilute Al–Fe–Si alloys designed with enhanced electrical conductivity and tensile strength. J. Alloy. Compd. 2015, 650, 768–776. [Google Scholar] [CrossRef]
- Shi, Z.; Gao, K.; Shi, Y.; Wang, Y. Microstructure and mechanical properties of rare-earth-modified Al–1Fe binary alloys. Mater. Sci. Eng. A 2015, 632, 62–71. [Google Scholar] [CrossRef]
- Zhu, X.; Blake, P.; Dou, K.; Ji, S. Strengthening die-cast Al-Mg and Al-Mg-Mn alloys with Fe as a beneficial element. Mater. Sci. Eng. A 2018, 732, 240–250. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, W.; Koe, B.; Connolley, T.; Irvine, S.; Allan, P.K.; Schlepütz, C.M.; Zhang, W.; Wang, F.; Eskin, D.G.; et al. 3D characterisation of the Fe-rich intermetallic phases in recycled Al alloys by synchrotron X-ray microtomography and skeletonization. Scr. Mater. 2018, 146, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Guan, R.; Misra, R.; Wang, Y.; Li, H.; Shang, Y. The mechanistic contribution of nanosized Al3Fe phase on the mechanical properties of Al-Fe alloy. Mater. Sci. Eng. A 2018, 724, 452–460. [Google Scholar] [CrossRef]
- Stolyarov, V.; Lapovok, R.; Brodova, I.G.; Thomson, P. Ultrafine-grained Al–5 wt.% Fe alloy processed by ECAP with backpressure. Mater. Sci. Eng. A 2003, 357, 159–167. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Esling, C.; Jiang, H.; Zhao, Z.; Zuo, Y.; Cui, J. Influence of a high magnetic field on the precipitation behavior of the primary Al3Fe phase during the solidification of a hypereutectic Al-3.31wt% Fe alloy. J. Cryst. Growth 2012, 339, 61–69. [Google Scholar] [CrossRef]
- John, R.; Karati, A.; Joseph, J.; Fabijanic, D.; Murty, B. Microstructure and mechanical properties of a high entropy alloy with a eutectic composition (AlCoCrFeNi2.1) synthesized by mechanical alloying and spark plasma sintering. J. Alloy. Compd. 2020, 835, 155424. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, X.; Ma, M.; Jiang, B.; Wang, B.; Yi, D. Effect of scandium micro-alloying on the creep resistance properties of Al-0.7Fe alloy cables. Mater. Sci. Eng. A 2017, 699, 194–200. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Yu, T.; Medjahed, A.; Wu, R.; Hou, L.; Zhang, J. Effect of Sc and Zr on Microstructure and Mechanical Properties of As-Cast Al-Li-Cu Alloys. Adv. Eng. Mater. 2017, 20, 1700898. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, Z.; Zhao, K.; Duan, J.; He, Z. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J. Alloy. Compd. 2012, 530, 71–80. [Google Scholar] [CrossRef]
- Pan, S.; Chen, X.; Zhou, X.; Wang, Z.; Chen, K.; Cao, Y.; Lu, F.; Li, S. Micro-alloying effect of Er and Zr on microstructural evolution and yield strength of Al-3Cu (wt.%) binary alloys. Mater. Sci. Eng. A 2020, 790, 139391. [Google Scholar] [CrossRef]
- Poplawsky, J.D.; Milligan, B.K.; Allard, L.F.; Shin, D.; Shyam, A. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys. Acta Mater. 2020, 194, 577–586. [Google Scholar] [CrossRef]
- Xiao, Q.; Xu, Y.; Huang, J.; Li, B.; Wang, B.; Liu, S.; Fu, L. Effects of quenching agents, two-step aging and microalloying on tensile properties and stress corrosion cracking of Al-Zn-Mg-Cu alloys. J. Mater. Res. Technol. 2020, 9, 10198–10208. [Google Scholar] [CrossRef]
- Ye, J.; Guan, R.; Zhao, H.; Yin, A. Effect of Zr content on the precipitation and dynamic softening behavior in Al–Fe–Zr alloys. Mater. Charact. 2020, 162, 110181. [Google Scholar] [CrossRef]
- Goulart, P.R.; Lazarine, V.B.; Leal, C.V.; Spinelli, J.E.; Cheung, N.; Garcia, A. Investigation of intermetallics in hypoeutectic Al–Fe alloys by dissolution of the Al matrix. Intermetallics 2009, 17, 753–761. [Google Scholar] [CrossRef]
- Yu, J.; Wanderka, N.; Miehe, G.; Banhart, J. Intermetallic phases in high purity Al-10Si-0.3Fe cast alloys with and without Sr modification studied by FIB tomography and TEM. Intermetallics 2016, 72, 53–61. [Google Scholar] [CrossRef]
- Wang, X.; Guan, R.G.; Li, Y.D.; Chen, T.J. Comparison of contribution of sub-rapid cooling and shear deformation to refinement of Fe-rich phase in hypereutectic Al-Fe alloy during rheo-extrusion. J. Iron Steel Res. Int. 2020, 1–9. [Google Scholar]
- Mondolfo, L.F. Aluminum Alloys: Structure and Properties; Elsevier: London, UK, 1988; pp. 51–353. [Google Scholar]
- Ohashi, T.; Ichikawa, R. Grain Refinement in Aluminium-Zirconium and Aluminium-Titanium Alloys by Metastable Phases. Mat. Res. Adv. Tech. 1973, 64, 517–521. [Google Scholar]
- Mikhaylovskaya, A.; Mochugovskiy, A.; Levchenko, V.; Tabachkova, N.; Mufalo, W.; Portnoy, V. Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy. Mater. Charact. 2018, 139, 30–37. [Google Scholar] [CrossRef]
- Knipling, K.E.; Karnesky, R.A.; Lee, C.P.; Dunand, D.C.; Seidman, D.N. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater. 2010, 58, 5184–5195. [Google Scholar] [CrossRef]
- Belov, N.; Alabin, A.; Matveeva, I.; Eskin, D. Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets. Trans. Nonferrous Met. Soc. China 2015, 25, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Tang, H.; Guo, J. Strengthening effect of nano and micro-sized precipitates in the hot-extruded Mg-5Sn-3Zn alloys with Ca addition. J. Alloy. Compd. 2017, 703, 552–559. [Google Scholar] [CrossRef]
- Karaköse, E.; Keskin, M. Structural investigations of mechanical properties of Al based rapidly solidified alloys. Mater. Des. 2011, 32, 4970–4979. [Google Scholar] [CrossRef]
- Kilicaslan, M.F. Effect of V addition on the nano-size spherical particles growing on the Fe-bearing intermetallics and silicon phases of gas atomized hypereutectic Al–20Si–5Fe alloys. J. Alloy. Compd. 2014, 606, 86–91. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strengh of polycrystals. J. Iron. Steel. Inst. 1953, 174, 25–28. [Google Scholar]
- Nes, E.; Holmedal, B.; Evangelista, E.; Marthinsen, K. Modelling grain boundary strengthening in ultra-fine grained aluminum alloys. Mater. Sci. Eng. A 2005, 410, 178–182. [Google Scholar] [CrossRef]
- Nabarro, F.R.N.; Mura, T. Dislocations in Solids: Dislocations in Metallurgy (Vol. 4). J. Appl. Mech. 1981, 48, 451–452. [Google Scholar] [CrossRef]
- Jiang, D.M.; Cao, Z.Y.; Guo, L.; Sun, X.; Zhang, J.L. Microstructure and Corrosion Properties of Mg-Zn-Ca-Nd Alloy for Biomedical Application. Adv. Mat. Res. 2013, 750, 756–759. [Google Scholar] [CrossRef]
- Dang, J.-Z.; Huang, Y.-F.; Cheng, J. Effect of Sc and Zr on microstructures and mechanical properties of as-cast Al-Mg-Si-Mn alloys. Trans. Nonferrous Met. Soc. China 2009, 19, 540–544. [Google Scholar] [CrossRef]
- Liu, Y.; Chong, X.; Jiang, Y.-H.; Zhou, R.; Feng, J. Mechanical properties and electronic structures of Fe-Al intermetallic. Phys. B Condens. Matter 2017, 506, 1–11. [Google Scholar] [CrossRef]
- Askeland, D.R.; Phule, P.P. The Science and Engineering of Materials; Cengage Learning: Boston, MA, USA, 2003; pp. 360–374. [Google Scholar]
- Kelly, A.; Nicholson, R.B. Strengthening Methods in Crystals; Elsevier: New York, NY, USA, 1971; pp. 74–85. [Google Scholar]
- Meyers, M.A.; Chawla, K.K. Mechanical Metallurgy: Principles and Applications; Prentice-Hall Ltd.: Englewood Cliffs, NJ, USA, 1984; pp. 102–115. [Google Scholar]
- Frost, H.J.; Ashby, M.F. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics; Pergamon Press Ltd.: Oxford, UK, 1982; pp. 224–235. [Google Scholar]
- Zhang, P.; Li, Z.M.; Liu, B.L.; Ding, W.J. Tensile properties and deformation behaviors of anew aluminum alloy for high pressure die casting. J. Mater. Sci Technol 2017, 33, 367–378. [Google Scholar] [CrossRef]
Samples | Fe | Zr | Al |
---|---|---|---|
Al–0.35Fe–0.1Zr | 0.352 | 0.122 | Bal. |
Al–0.35Fe–0.2Zr | 0.341 | 0.247 | Bal. |
Al–0.35Fe–0.3Zr | 0.357 | 0.298 | Bal. |
Al–0.35Fe–0.4Zr | 0.354 | 0.380 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Guan, R.; Zhao, H.; He, C.; Xiong, K. Effect of Zr Microalloying on the Microstructures and Strengthening Mechanism of As-Cast Al-Fe-Zr Alloys. Materials 2020, 13, 4744. https://doi.org/10.3390/ma13214744
Ye J, Guan R, Zhao H, He C, Xiong K. Effect of Zr Microalloying on the Microstructures and Strengthening Mechanism of As-Cast Al-Fe-Zr Alloys. Materials. 2020; 13(21):4744. https://doi.org/10.3390/ma13214744
Chicago/Turabian StyleYe, Jieyun, Renguo Guan, Hongjin Zhao, Changwei He, and Kezhi Xiong. 2020. "Effect of Zr Microalloying on the Microstructures and Strengthening Mechanism of As-Cast Al-Fe-Zr Alloys" Materials 13, no. 21: 4744. https://doi.org/10.3390/ma13214744
APA StyleYe, J., Guan, R., Zhao, H., He, C., & Xiong, K. (2020). Effect of Zr Microalloying on the Microstructures and Strengthening Mechanism of As-Cast Al-Fe-Zr Alloys. Materials, 13(21), 4744. https://doi.org/10.3390/ma13214744