Characterization of a Macro- and Micro-Textured Titanium Grade 5 Alloy Surface Obtained by Etching Only without Sandblasting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Topographic and SEM Characterization
2.2. X-Ray Diffraction
2.3. Concentration Profile of Elements
2.4. Hydrogen Concentration
2.5. Ability to Form Nanostructures in Water
3. Results
3.1. Topographic Characterization
3.2. X-Ray Diffraction
3.3. Concentration Profile of Elements
3.4. Hydrogen Concentration
3.5. Ability to Form Nanostructures in Deionized Water
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wennerberg, A.; Albrektsson, T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Impl. Res. 2009, 20, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Szmukler-Moncler, S.; Testori, T.; Bernard, J.-P. Etched implants: A comparative surface analysis of four implant systems. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Dohan Ehrenfest, D.M.; Del Corso, M.; Kang, B.-S.; Leclercq, P.; Mazor, Z.; Horowitz, R.A.; Russe, P.; Oh, H.-K.; Zou, D.-R.; Shibli, J.A.; et al. Identification card and codification of the chemical and morphological characteristics of 62 dental implant surfaces. Part 3: Sand-blasted/acid-etched (SLA type) and related surfaces (Group 2A, main subtractive process). Poseido 2014, 2, 37–55. [Google Scholar]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol. 2000 2017, 73, 22–40. [Google Scholar] [CrossRef] [PubMed]
- Schüpbach, P.; Glauser, R.; Bauer, S. Al2O3 particles on titanium dental implant systems following sandblasting and acid-etching process. Int. J. Biomater. 2019, 2, 6318429. [Google Scholar] [CrossRef] [Green Version]
- Beaty, K.D. Implant Surface Preparation. U.S. Patent 5,876,453, 2 March 1999. [Google Scholar]
- Tait, R.T.; Berckmans, B.N.; Ross, T.W.; Mayfield, R.L. Surface Treatment Process for Implants Made of Titanium Alloy. U.S. Patent 0265, 780, 2004. [Google Scholar]
- Dohan Ehrenfest, D.M.; Del Corso, M.; Kang, B.-S.; Leclercq, P.; Mazor, Z.; Horowitz, R.A.; Russe, P.; Oh, H.-K.; Zou, D.-R.; Shibli, J.A.; et al. Identification card and codification of the chemical and morphological characteristics of 62 dental implant surfaces. Part 4: Resorbable Blasting Media (RBM), Dual Acid-Etched (DAE), Subtractive Impregnated Micro/Nanotextured (SIMN) and related surfaces (Group 2B, other subtractive process). Poseido 2014, 2, 57–79. [Google Scholar]
- Szmukler-Moncler, S.; Blus, C.; Orrù, G. Achieving macro- and micro-roughness on Ti alloy by etching without prior sandblasting: A surface characterization. Eur. Cell. Mater. 2016, 32, 1–2. [Google Scholar]
- Szmukler-Moncler, S.; Perrin, D.; Ahossi, V.; Magnin, G.; Bernard, J.-P. Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 68, 149–159. [Google Scholar] [CrossRef]
- Saulacic, N.; Bosshardt, D.D.; Bornstein, M.M.; Berner, S.; Buser, D. Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. Eur. Cell. Mater. 2012, 23, 273–286. [Google Scholar] [CrossRef]
- Pimenta, J.; Szmukler-Moncler, S.; Raigrodski, A.J. Physical characterization of 3 implant systems with distinct biocompatible materials and surfaces. J. Prosthetic Dent. 2020, accepted. [Google Scholar]
- Wennerberg, A.; Jimbo, R.; Stübinger, S.; Obrecht, M.; Dard, M.; Berner, S. Nanostructures and hydrophilicity influence osseointegration: A biomechanical study in the rabbit tibia. Clin. Oral Implant. Res. 2014, 25, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Taborelli, M.; Jobin, M.; François, P.; Vaudaux, P.; Tonetti, M.; Szmukler-Moncler, S.; Simpson, J.P.; Descouts, P. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (I) Surface characterization. Clin. Oral Implants Res. 1997, 8, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Aronsson, B.O.; Hjörvarsson, B.; Frauchiger, L.; Taborelli, M.; Vallotton, P.H.; Descouts, P. Hydrogen desorption from sandblasted and acid-etched titanium surfaces after glow-discharge treatment. J. Biomed. Mat. Res. A 2001, 54, 20–29. [Google Scholar] [CrossRef]
- Szmukler-Moncler, S.; Bischof, M.; Nedir, R.; Ermrich, M. Titanium hydride and hydrogen concentration in acid-etched commercially pure titanium and titanium alloy implants: A comparative analysis of five implant systems. Clin. Oral Implants Res. 2010, 21, 944–950. [Google Scholar] [CrossRef] [PubMed]
- ASTM E1447-09(2016), Standard Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method; ASTM International: West Conshohocken, PA, USA, 2016.
- Macak, J.M.; Tsuchiya, H.; Taveira, L.; Ghicov, A.; Schmuki, P. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. J. Biomed. Mater. Res. A 2005, 75, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Gotfredsen, K.; Wennerberg, A.; Johansson, C.; Skovgaard, L.T.; Hjörting-Hansen, E. Anchorage of TiO2 blasted, HA-coated and machined implants: An experimental study with rabbits. J. Biomed. Mater. Res. 1995, 29, 1223–1231. [Google Scholar]
- Wong, M.; Eulenberger, J.; Schenk, R.; Hunziker, E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J. Biomed. Mat. Res. 1995, 29, 1567–1575. [Google Scholar] [CrossRef]
- Klokkevold, P.R.; Johnson, P.; Dadgostari, S.; Caputo, A.; Davies, J.E.; Nishimura, R.D. Early endosseous integration enhanced by dual acid etching of titanium: A removal torque study in the rabbit. Clin. Oral Implant. Res. 2001, 12, 350–357. [Google Scholar] [CrossRef]
- Bernard, J.P.; Szmukler-Moncler, S.; Pessotto, S.; Vazquez, L.; Belser, U.C. The anchorage of Branemark and ITI implants of various lengths. I. An experimental study in the canine mandible. Clin Oral Implant. Res. 2003, 14, 593–600. [Google Scholar] [CrossRef]
- Rønold, H.J.; Lyngstadaas, S.P.; Ellingsen, J.P. Analyzing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials 2003, 24, 4559–4564. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T.; Andersson, B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int. J. Oral Maxillofac. Implant. 1996, 11, 38–45. [Google Scholar]
- Wennerberg, A.; Albrektsson, T. On implant surfaces: A review of current knowledge and opinions. Int. J. Oral Maxillofac. Implants. 2010, 25, 63–74. [Google Scholar] [PubMed]
- Zetterquist, L.; Feldman, S.; Rotter, B.; Vincenzi, G.; Wennstrom, J.; Chierico, A. A prospective, multicenter, randomized controlled 5-year study of hybrid and fully etched implants for the incidence of peri-implantitis. J. Periodontol. 2010, 81, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sul, Y.-T.; Byon, E.; Wennerberg, A. Surface characteristics of electrochemically oxidized implants and acid-etched implants: Surface chemistry, morphology, pore configurations, oxide thickness, crystal structure, and roughness. Int. J. Oral Maxillofac. Implant. 2008, 23, 631–640. [Google Scholar]
- Mazor, Z.; Cohen, D.K. Preliminary 3-dimensional surface texture measurement and early loading results with a microtextured implant surface. Int. J. Oral Maxillofac. Implants 2003, 18, 729–738. [Google Scholar]
- Duddeck, D.U.; Neugebauer, J.; Scheer, M. Surprises in the land of microns. Eur. J. Dental Implantol. 2010, 6, 50–54. [Google Scholar]
- Sullivan, D.Y.; Sherwood, R.L.; Collins, T.A.; Krogh, P.H. The reverse-torque test: A clinical report. Int. J. Oral Maxillofac. Implants 1996, 11, 179–185. [Google Scholar]
- Roccuzzo, M.; Bunino, M.; Prioglio, F.; Bianchi, S.D. Early loading of sandblasted and acid etched (SLA) implants: A prospective split-mouth comparative study. Clin. Oral Implant Res. 2001, 12, 572–578. [Google Scholar] [CrossRef]
- SanMartin, A.; Manchester, F.D. The H-Ti (Hydrogen-Titanium) system. J. Phase Equil. 1987, 8, 30–42. [Google Scholar]
- Livanov, V.A.; Bukhanova, A.A.; Kolachev, B.A. Hydrogen in Titanium; D Davey & Co: New York, NY, USA, 1962; pp. 35–60. [Google Scholar]
- Dantzer, P. High temperature thermodynamics of H2 and D2 in titanium and in dilute titanium oxygen solid solutions. J. Phys. Chem. Solids 1983, 44, 913–923. [Google Scholar] [CrossRef]
- Pittinato, G.F.; Hanna, W.D. Hydrogen in a transformed Ti-6Al-4V. Metall. Mater. Trans. B 1972, 3, 2905–2909. [Google Scholar] [CrossRef]
- Wu, T.I.; Wu, J.K. Effects of electrolytic hydrogenating parameters on structure and composition of surface hydrides of cp-Ti and Ti–6Al–4V alloy. Mat. Chem. Phys. 2002, 74, 5–12. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.D.; Shin, J.H.; Lee, K.H. Surface modification by alkali and heat treatments in titanium alloys. J. Biomed. Mater. Res. 2002, 61, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.S.; Sul, Y.T.; Oh, S.J.; Lee, H.J.; Albrektsson, T. XPS, AES and SEM analysis of recent dental implants. Acta Biomater. 2009, 5, 2222–2229. [Google Scholar] [CrossRef] [PubMed]
- Lausmaa, J.; Kasemo, N.; Mattsson, H.; Odelius, H. Multi-technique surface characterization of oxide films on electropolished and anodically oxidized titanium. Appl. Surf. Sci. 1990, 45, 189–200. [Google Scholar] [CrossRef]
- Sittig, C.; Textor, M.; Spencer, N.D.; Wieland, M.; Vallotton, P.H. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J. Mater. Sci. Mater. Med. 1999, 10, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Kopf, B.S.; Ruch, S.; Berner, S.; Spencer, N.D.; Maniura-Weber, K. The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies. J. Biomed. Mater. Res. A 2015, 103, 2661–2672. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmukler-Moncler, S.; Blus, C.; Morales Schwarz, D.; Orrù, G. Characterization of a Macro- and Micro-Textured Titanium Grade 5 Alloy Surface Obtained by Etching Only without Sandblasting. Materials 2020, 13, 5074. https://doi.org/10.3390/ma13225074
Szmukler-Moncler S, Blus C, Morales Schwarz D, Orrù G. Characterization of a Macro- and Micro-Textured Titanium Grade 5 Alloy Surface Obtained by Etching Only without Sandblasting. Materials. 2020; 13(22):5074. https://doi.org/10.3390/ma13225074
Chicago/Turabian StyleSzmukler-Moncler, Serge, Cornelio Blus, David Morales Schwarz, and Germano Orrù. 2020. "Characterization of a Macro- and Micro-Textured Titanium Grade 5 Alloy Surface Obtained by Etching Only without Sandblasting" Materials 13, no. 22: 5074. https://doi.org/10.3390/ma13225074
APA StyleSzmukler-Moncler, S., Blus, C., Morales Schwarz, D., & Orrù, G. (2020). Characterization of a Macro- and Micro-Textured Titanium Grade 5 Alloy Surface Obtained by Etching Only without Sandblasting. Materials, 13(22), 5074. https://doi.org/10.3390/ma13225074