Systematic Review on the Creep of Fiber-Reinforced Concrete
Abstract
:1. Introduction
2. Methodology
- “fib** reinforced concrete” AND “long-term”
- “fib** reinforced concrete” AND “time-dependent”
- “fib** reinforced concrete” AND “creep”
- “synthetic” AND “fib**” AND “creep”
- “polypropylene” AND “fib**” AND “creep”
3. Research on the Material Level
3.1. Creep Behavior of Fibers and Fiber–Concrete Bond
3.1.1. Creep Behavior of Individual Fibers or Filaments
3.1.2. Pull-Out Behavior of Fibers
3.1.3. Summary of the Results on the Creep Behavior of Fibers and Fiber–Concrete Bond
3.2. Creep Behaviour of Fiber-Reinforced Concrete (FRC)
3.2.1. Effect of Fibers on Compressive Creep and Shrinkage of FRC
3.2.2. Long-Term Uniaxial Tension Tests
3.2.3. Long-Term Bending Tests
3.2.4. Modeling the Creep Behavior of FRC
3.2.5. Summary of the Results on the Creep Behavior of FRC
4. Research on the Structural Level
4.1. Long-Term Tests on Full-Scale FRC Members
4.2. Serviceability Limit State (SLS) Design of FRC
4.3. Summary of the Results on Structural Level Testing and Modeling of FRC Creep Behavior
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Di Prisco, M.; Plizzari, G.; Vandewalle, L. Fibre reinforced concrete: New design perspectives. Mater. Struct. 2009, 42, 1261–1281. [Google Scholar] [CrossRef]
- FIB Bulletin 83. In Precast Tunnel Segments in Fibre-Reinforced Concrete; International Federation for Structural Concrete (fib): Lausanne, Switzerland, 2018.
- De la Fuente, A.; Blanco, A.; Armengou, J.; Aguado, A. Sustainability based-approach to determine the concrete type and reinforcement configuration of TBM tunnels linings. Case study: Extension line to Barcelona Airport T1. Tunn. Undergr. Space Technol. 2017, 61, 179–188. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente, A.; Casanovas-Rubio, M.D.M.; Pons, O.; Armengou, J. Sustainability of Column-Supported RC Slabs: Fiber Reinforcement as an Alternative. J. Constr. Eng. Manag. 2019, 145, 04019042. [Google Scholar] [CrossRef] [Green Version]
- WBCSD. The Cement Sustainability Initiative. World Bus. Counc. Sustain. Dev. 2017, 41. Available online: https://docs.wbcsd.org/2009/07/CSI-RecyclingConcrete-FullReport.pdf (accessed on 12 October 2020).
- Scrivener, K.L.; Vanderley, J.M.; Gartner, E.M. Eco-Efficient Cements: Potential, Economically Viable Solutions for a Low-CO2, Cement Based Materials Industry; UN Environment: Paris, France, 2016. [Google Scholar]
- Roesler, J.R.; Altoubat, S.A.; Lange, D.A.; Rieder, K.A.; Ulreich, G.R. Effect of synthetic fibers on structural behavior of concrete slabs-on-ground. ACI Mater. J. 2006, 103, 3–10. [Google Scholar] [CrossRef]
- Meda, A.; Plizzari, G.A.; Riva, P. Fracture behavior of SFRC slabs on grade. Mater. Struct. Constr. 2004, 37, 405–411. [Google Scholar] [CrossRef]
- Alani, A.M.; Beckett, D. Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab. Constr. Build. Mater. 2013, 41, 335–344. [Google Scholar] [CrossRef]
- Meda, A.; Plizzari, G.A. New design approach for steel fiber-reinforced concrete slabs-on-ground based on fracture mechanics. ACI Struct. J. 2004, 101, 298–303. [Google Scholar] [CrossRef]
- Chen, S. Steel fiber concrete slabs on ground: A structural matter. ACI Struct. J. 2007, 104, 373–375. [Google Scholar]
- Caratelli, A.; Meda, A.; Rinaldi, Z.; Romualdi, P. Structural behaviour of precast tunnel segments in fiber reinforced concrete. Tunn. Undergr. Space Technol. 2011, 26, 284–291. [Google Scholar] [CrossRef]
- Chiaia, B.; Fantilli, A.P.; Vallini, P. Evaluation of minimum reinforcement ratio in FRC members and application to tunnel linings. Mater. Struct. Constr. 2007, 40, 593–604. [Google Scholar] [CrossRef]
- Chiaia, B.; Fantilli, A.P.; Vallini, P. Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings. Eng. Struct. 2009, 31, 1600–1606. [Google Scholar] [CrossRef]
- De la Fuente, A.; Pujadas, P.; Blanco, A.; Aguado, A. Experiences in Barcelona with the use of fibres in segmental linings. Tunn. Undergr. Space Technol. 2012, 27, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi Avanaki, M.; Hoseini, A.; Vahdani, S.; de Santos, C.; de la Fuente, A. Seismic fragility curves for vulnerability assessment of steel fiber reinforced concrete segmental tunnel linings. Tunn. Undergr. Space Technol. 2018, 78, 259–274. [Google Scholar] [CrossRef]
- Plizzari, G.A.; Tiberti, G. Steel fibers as reinforcement for precast tunnel segments. Tunn. Undergr. Space Technol. 2006, 21, 438–439. [Google Scholar] [CrossRef]
- Meda, A.; Rinaldi, Z.; Caratelli, A.; Cignitti, F. Experimental investigation on precast tunnel segments under TBM thrust action. Eng. Struct. 2016, 119, 174–185. [Google Scholar] [CrossRef]
- De La Fuente, A.; Escariz, R.C.; De Figueiredo, A.D.; Aguado, A. Design of macro-synthetic fibre reinforced concrete pipes. Constr. Build. Mater. 2013, 43, 523–532. [Google Scholar] [CrossRef]
- De La Fuente, A.; Escariz, R.C.; De Figueiredo, A.D.; Molins, C.; Aguado, A. A new design method for steel fibre reinforced concrete pipes. Constr. Build. Mater. 2012, 30, 547–555. [Google Scholar] [CrossRef]
- Massicotte, B. High performance fibre reinforced concrete for structural applications. In Proceedings of the 3rd FRC International Workshop Fibre Reinforced Concrete: From Design to Structural Applications, Desenzano, Lake Garda, Italy, 27–30 June 2018. [Google Scholar]
- Aidarov, S.; de la Fuente, A.; Mena, F.; Ángel, S. Campaña experimental de un forjado de hormigón reforzado con fibras a escala real. In Proceedings of the ACE; Fundació Privada Institut d’Estudis Estructurals: Barcelona, Spain, 2019; pp. 1–10. [Google Scholar]
- Destrée, X.; Mandl, J. Steel fibre only reinforced concrete in free suspended elevated slabs: Case studies, design assisted by testing route, comparison to the latest SFRC standard documents. In Proceedings of the International FIB Symposium 2008—Tailor Made Concrete Structures: New Solutions for our Society, Amsterdam, The Netherlands, 19–21 May 2008; pp. 437–443. [Google Scholar]
- Gossla, U. Development of SFRC Free Suspended Elevated Flat Slabs; Aachen University of Applied Sciences: Aachen, Germany, 2005. [Google Scholar]
- Parmentier, B.; Van Itterbeeck, P.; Skowron, A. The Behaviour of SFRC Flat Slabs: The Limelette Full-Scale Experiments to Support Design Model Codes; ACI Special Publication, American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- Plizzari, G.; Serna, P. Structural effects of FRC creep. Mater. Struct. Constr. 2018, 51, 167. [Google Scholar] [CrossRef] [Green Version]
- Ghali, A.; Favre, R.; Eldbadry, M. Concrete Structures. Stresses and Deformation; Taylor & Francis: New York, NY, USA, 2002; ISBN 0203987527. [Google Scholar]
- Gettu, R.; Zerbino, R.; Jose, S. Factors Influencing Creep of Cracked Fibre Reinforced Concrete: What We Think We Know & What We Do Not Know. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Serna, P., Llano-Tore, A., Cavalaro, S.H.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–12. [Google Scholar]
- Berrocal, C.G.; Löfgren, I.; Lundgren, K. The effect of fibres on steel bar corrosion and flexural behaviour of corroded RC beams. Eng. Struct. 2018, 163, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Vieira, M.D.M. Assessment of Chloride Corrosion in Steel Fibre Reinforced Cementitious Composites. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2018. [Google Scholar]
- Bernard, E.S. Changes in long-term performance of fibre reinforced shotcrete due to corrosion and embrittlement. Tunn. Undergr. Space Technol. 2020, 98, 103335. [Google Scholar] [CrossRef]
- Science Direct Scopus. Available online: https://www.scopus.com/home.uri (accessed on 28 July 2020).
- Clarivate Analytics Web of Science. Available online: www.webofknowledge.com (accessed on 28 July 2020).
- Liu, X.; Huang, Y.; Deng, C.; Wang, X.; Tong, W.; Liu, Y.; Huang, J.; Yang, Q.; Liao, X.; Li, G. Study on the Creep Behavior of Polypropylene. Polym. Eng. Sci. 2009, 49, 1375–1382. [Google Scholar] [CrossRef]
- Vrijdaghs, R.; di Prisco, M.; Vandewalle, L. Creep Deformations of Structural Polymeric Macrofibers. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Serna, P., Llano-Tore, A., Cavalaro, S.H.P., Eds.; Springer: Valencia, Spain, 2017; pp. 53–62. [Google Scholar]
- Vrijdaghs, R.; di Prisco, M.; Vandewalle, L. Short-term and creep pull-out behavior of polypropylene macrofibers at varying embedded lengths and angles from a concrete matrix. Constr. Build. Mater. 2017, 147, 858–864. [Google Scholar] [CrossRef]
- Nieuwoudt, P.D.; Babafemi, A.J.; Boshoff, W.P. The response of cracked steel fibre reinforced concrete under various sustained stress levels on both the macro and single fibre level. Constr. Build. Mater. 2017, 156, 828–843. [Google Scholar] [CrossRef]
- Babafemi, A.J.; du Plessis, A.; Boshoff, W.P. Pull-out creep mechanism of synthetic macro fibres under a sustained load. Constr. Build. Mater. 2018, 174, 466–473. [Google Scholar] [CrossRef]
- Fouda, I.M.; El-Farahaty, K.A.; Seisa, E.A. Interferometric Study of Creep Deformation and Some Structural Properties of Polypropylene Fiber at Three Different Temperatures. J. Appl. Polym. Sci. 2008, 110, 761–768. [Google Scholar] [CrossRef]
- Hadley, D.W.; Ward, I.M. Non-linear creep and recovery behaviour of polypropylene fibres. J. Mech. Physcs Solids 1965, 13, 397–411. [Google Scholar] [CrossRef]
- Sabuncuoglu, B.; Acar, M.; Silberschmidt, V.V. Analysis of creep behavior of polypropylene fibers. Appl. Mech. Mater. 2011, 70, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Takaku, A. Effect of temperature on creep fracture of polypropylene fibers. J. Appl. Polym. Sci. 1980, 25, 1861–1866. [Google Scholar] [CrossRef]
- Pujadas, P.; Blanco, A.; Cavalaro, S.H.P.; De La Fuente, A.; Aguado, A. Flexural Post-cracking Creep Behaviour of Macro-synthetic and Steel Fiber Reinforced Concrete. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Serna, P., Llano-Tore, A., Cavalaro, S.H.P., Eds.; Springer: Valencia, Spain, 2017; pp. 77–87. [Google Scholar]
- Amin, A.; Gilbert, R.I. Steel fiber-reinforced concrete beams—Part I: Material characterization and in-service behavior. ACI Struct. J. 2019, 116, 101–111. [Google Scholar] [CrossRef]
- Amin, A.; Ian Gilbert, R. Steel fiber-reinforced concrete beams—Part II: Strength, ductility, and design. ACI Struct. J. 2019, 116, 113–123. [Google Scholar] [CrossRef]
- Kusterle, W. Viscous material behavior of solids-creep of polymer fiber reinforced concrete. In Proceedings of the 5th Central European Congress on Concrete Engineering, Baden, Germany, 24–25 September 2009; pp. 95–99. [Google Scholar]
- Kurtz, S.; Balaguru, P. Postcrack creep of polymeric fiber-reinforced concrete in flexure. Cem. Concr. Res. 2000, 30, 183–190. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Boshoff, W.P. Testing and modelling the creep of cracked macro-synthetic fibre reinforced concrete (MSFRC) under flexural loading. Mater. Struct. Constr. 2016, 49, 4389–4400. [Google Scholar] [CrossRef]
- Zhao, G.; di Prisco, M.; Vandewalle, L. Experimental investigation on uniaxial tensile creep behavior of cracked steel fiber reinforced concrete. Mater. Struct. Constr. 2015, 48, 3173–3185. [Google Scholar] [CrossRef]
- Vrijdaghs, R.; di Prisco, M.; Vandewalle, L. Uniaxial tensile creep of a cracked polypropylene fiber reinforced concrete. Mater. Struct. 2018, 51, 5. [Google Scholar] [CrossRef]
- Noushini, A.; Castel, A.; Gilbert, R.I. Creep and shrinkage of synthetic fibre-reinforced geopolymer concrete. Mag. Concr. Res. 2019, 71, 1070–1082. [Google Scholar] [CrossRef]
- Nakov, D.; Markovski, G.; Arangjelovski, T.; Mark, P. Experimental and analytical analysis of creep of steel fibre reinforced concrete. Period. Polytech. Civ. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- Zerbino, R.; Giaccio, G.; Monetti, D.; Torrijos, M. Effect of Beam Width on the Creep Behaviour of Cracked Fibre Reinforced Concrete. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Serna, P., Llano-Tore, A., Cavalaro, S.H.P., Eds.; Springer: Valencia, Spain, 2017; pp. 169–178. [Google Scholar]
- Pešić, N.; Živanović, S.; Garcia, R.; Papastergiou, P. Mechanical properties of concrete reinforced with recycled HDPE plastic fibres. Constr. Build. Mater. 2016, 115, 362–370. [Google Scholar] [CrossRef] [Green Version]
- García-Taengua, E.; Arango, S.; Martí-Vargas, J.R.; Serna, P. Flexural creep of steel fiber reinforced concrete in the cracked state. Constr. Build. Mater. 2014, 65, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Monetti, D.H.; Llano-Torre, A.; Torrijos, M.C.; Giaccio, G.; Zerbino, R.; Martí-Vargas, J.R.; Serna, P. Long-term behavior of cracked fiber reinforced concrete under service conditions. Constr. Build. Mater. 2019, 196, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Zerbino, R.L.; Barragán, B.E. Long-term behavior of cracked steel fiber-reinforced concrete beams under sustained loading. ACI Mater. J. 2012, 109, 215–224. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Teng, S. Experiments on drying shrinkage and creep of high performance hybrid-fiber-reinforced concrete. Cem. Concr. Compos. 2020, 106, 103481. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Boshoff, W.P. Time-dependent behaviour of pre-cracked polypropylene fibre reinforced concrete (PFRC) under sustained loading. Res. Appl. Struct. Eng. Mech. Comput. 2013, 1593–1598. [Google Scholar] [CrossRef]
- Błyszko, J. Comparative Analysis of Creep in Standard and Fibre Reinforced Concretes under different Load Conditions. Procedia Eng. 2017, 193, 478–485. [Google Scholar] [CrossRef]
- Teixeira Buttignol, T.E.; Colombo, M.; di Prisco, M. Long-term aging effects on tensile characterization of steel fibre reinforced concrete. Struct. Concr. 2016, 17, 1082–1093. [Google Scholar] [CrossRef]
- Chern, J.C.; Young, C.H. Compressive creep and shrinkage of steel fibre reinforced concrete. Int. J. Cem. Compos. Light. Concr. 1989, 11, 205–214. [Google Scholar] [CrossRef]
- Chern, J.C.; Young, C.H. Pickett effect and creep in flexure of steel-fiber reinforced concrete. J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. 1992, 15, 695–702. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Boshoff, W.P. Macro-Synthetic Fibre Reinforced Concrete: Creep and Creep Mechanisms. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Serna, P., Llano-Tore, A., Cavalaro, S.H.P., Eds.; Springer: Valencia, Spain, 2017; pp. 179–191. [Google Scholar]
- Galeote, E.; Blanco, A.; de la Fuente, A.; Cavalaro, S.H.P. Creep Behaviour of Cracked High Performance Fibre Reinforced Concrete Beams Under Flexural Load. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Springer: Berlin/Heidelberg, Germany, 2017; pp. 111–123. [Google Scholar]
- Kohoutkova, A.; Vodička, J.; Kristek, V. Creep and Shrinkage of Fibre-Reinforced Concrete and a Guide for Modeling. In Proceedings of the CONCREEP 10; ASCE: Reston, VI, USA, 2015; pp. 707–713. [Google Scholar]
- Marangon, E.; Toledo Filho, R.D.; Fairbairn, E.M.R. Basic Creep under Compression and Direct Tension Loads of Self-compacting-steel Fibers Reinforced Concrete. In High Performance Fiber Reinforced Cement Composites 6; Springer: Dordrecht, The Netherlands, 2012; Volume 2, pp. 171–178. [Google Scholar]
- Llano-Torre, A.; García-Taengua, E.; Martí-Vargas, J.R.; Serna, P. Compilation and study of a database of tests and results on flexural creep behavior of fibre reinforced concrete specimens. In Proceedings of the FIB Symposium Concrete Innovation and Design, Copenhagen, Denmark, 18–20 May 2015; pp. 253–254. [Google Scholar]
- Nürnbergerová, T.; Babál, B. Long-term behaviour of plain and steel fibre reinforced concrete rings. Mater. Struct. 1992, 25, 412–416. [Google Scholar] [CrossRef]
- Pujadas, P.; Blanco, A.; Cavalaro, S.; de la Fuente, A.; Aguado, A. The need to consider flexural post-cracking creep behavior of macro-synthetic fiber reinforced concrete. Constr. Build. Mater. 2017, 149, 790–800. [Google Scholar] [CrossRef]
- Serna, P.; Martí-Vargas, J.R.; Bossio, M.E.; Zerbino, R. Creep and residual properties of cracked macro-synthetic fibre reinforced concretes. Mag. Concr. Res. 2016, 68, 197–207. [Google Scholar] [CrossRef]
- Sturm, A.B.; Visintin, P.; Oehlers, D.J.; Seracino, R. Time-Dependent Tension-Stiffening Mechanics of Fiber-Reinforced and Ultra-High-Performance Fiber-Reinforced Concrete. J. Struct. Eng. 2018, 144, 04018122. [Google Scholar] [CrossRef]
- Sprince, A.; Korjakins, A.; Pakrastinsh, L. Time-Dependent Behavior of High Performance Fiber-Reinforced Concrete; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; Volume 705, pp. 75–80. [Google Scholar] [CrossRef]
- Vrijdaghs, R.; Verstrynge, E.; Vandewalle, L.; di Prisco, M. A two-phased and multi-scale finite element analysis of the tensile creep behavior of polypropylene fiber reinforced concrete. In Conference on Computational Modelling of Concrete and Concrete Structures, EURO-C 2018; CRC Press/Balkema: Leiden, The Netherlands, 2018; pp. 857–866. [Google Scholar] [CrossRef]
- Buratti, N.; Mazzotti, C. Creep Testing Methodologies and Results Interpretation. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Serna, P., Llano-Tore, A., Cavalaro, S.H.P., Eds.; Springer: Valencia, Spain, 2017; pp. 13–25. [Google Scholar]
- Vrijdaghs, R.; di Prisco, M.; Vandewalle, L. Creep of polymeric fiber reinforced concrete: A numerical model with discrete fiber treatment. Comput. Struct. 2020, 233, 106233. [Google Scholar] [CrossRef]
- Vrijdaghs, R.; di Prisco, M.; Vandewalle, L. A Numerical Model for the Creep of Fiber Reinforced Concrete. In Proceedings of the High Tech Concrete: Where Technology and Engineering Meet; International Federation for Structural Concrete (fib): Maastricht, The Netherlands, 2017; pp. 366–373. [Google Scholar]
- Zerbino, R.; Monetti, D.H.; Giaccio, G. Creep behaviour of cracked steel and macro-synthetic fibre reinforced concrete. Mater. Struct. Constr. 2016, 49, 3397–3410. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Boshoff, W.P. Tensile creep of macro-synthetic fibre reinforced concrete (MSFRC) under uni-axial tensile loading. Cem. Concr. Compos. 2015, 55, 62–69. [Google Scholar] [CrossRef]
- Kusterle, W. Flexural Creep Tests on Beams—8 Years of Experience with Steel and Synthetic Fibres. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Serna, P., Llano-Tore, A., Cavalaro, S.H.P., Eds.; Springer: Valencia, Spain, 2017; pp. 27–39. [Google Scholar]
- Van Bergen, S.; Pouillon, S.; Vitt, G. Experiences from 14 Years of Creep Testing of Steel and Polymer Fiber Reinforced Concrete. In Proceedings of the Creep Behaviour in Cracked Sections of Fibre Reinforced Concrete; Serna, P., Llano-Tore, A., Cavalaro, S.H.P., Eds.; Springer: Valencia, Spain, 2017; pp. 41–52. [Google Scholar]
- Arango, S.E.; Serna, P.; Martí-Vargas, J.R.; García-Taengua, E. A Test Method to Characterize Flexural Creep Behaviour of Pre-cracked FRC Specimens. Exp. Mech. 2012, 52, 1067–1078. [Google Scholar] [CrossRef]
- Buratti, N.; Mazzotti, C. Experimental tests on the effect of temperature on the long-term behaviour of macrosynthetic Fibre Reinforced Concretes. Constr. Build. Mater. 2015, 95, 133–142. [Google Scholar] [CrossRef]
- Amin, A.; Gilbert, R.I. Instantaneous crack width calculation for steel fiber-reinforced concrete flexural members. ACI Struct. J. 2018, 115, 535–543. [Google Scholar] [CrossRef]
- Raymond, A.; Gilbert, I.; Bernard, C.E.S. Time-dependent Analysis of Macro-synthetic FRC Sections with Bar Reinforcement. In Proceedings of the ITA WTC 2015 Congress and 41st General Assembly, Dubrovnik, Croatia, 22–28 May 2015. [Google Scholar]
- Watts, M.J.; Amin, A.; Gilbert, R.I.; Kaufmann, W. Behavior of fiber reinforced concrete members under sustained axial/flexural load. Struct. Concr. 2020. [Google Scholar] [CrossRef]
- Watts, M.J.; Amin, A.; Gilbert, R.I.; Kaufmann, W.; Minelli, F. Simplified prediction of the time dependent deflection of SFRC flexural members. Mater. Struct. Constr. 2020, 53. [Google Scholar] [CrossRef]
- Ashour, S.A.; Mahmood, K.; Wafa, F.F. Long-term deflection of high-strength fiber reinforced concrete beams. Struct. Eng. Mech. 1999, 8, 531–546. [Google Scholar] [CrossRef]
- Ezeldin, A.S.; Shiah, T.W. Analytical immediate and long-term deflections of fiber-reinforced concrete beams. J. Struct. Eng. 1995, 121, 727–738. [Google Scholar] [CrossRef]
- Habel, K.; Denarié, E.; Brühwiler, E. Time dependent behavior of elements combining ultra-high performance fiber reinforced concretes (UHPFRC) and reinforced concrete. Mater. Struct. Constr. 2006, 39, 557–569. [Google Scholar] [CrossRef]
- Kaminski, M.; Bywalski, C. Influence of creep deformations on value of long term deflections of steel fiber-reinforced concrete beams. In Proceedings of the 8th International Conference on Creep, Shrinkage and Durability of Concrete and Concrete Structures, Ise-Shima, Japan, 30 September–2 October 2008; Volume 1, pp. 729–734. [Google Scholar] [CrossRef]
- Neutov, S.; Sydorchuk, M.; Surianinov, M. Experimental studies of reinforced concrete and fiber-reinforced concrete beams with short-term and long-term loads. Mater. Sci. Forum 2019, 968 MSF, 227–233. [Google Scholar] [CrossRef]
- Park, Y.; Abolmaali, A.; Attiogbe, E.; Lee, S.H. Time-dependent behavior of synthetic fiber-reinforced concrete pipes under long-term sustained loading. Transp. Res. Rec. 2014, 71–79. [Google Scholar] [CrossRef]
- Al Rikabi, F.T.; Sargand, S.M.; Khoury, I.; Kurdziel, J. A new test method for evaluating the long-term performance of fiber-reinforced concrete pipes. Adv. Struct. Eng. 2020, 23, 1336–1349. [Google Scholar] [CrossRef]
- Aslani, F.; Nejadi, S.; Samali, B. Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres. Comput. Concr. 2014, 14, 419–444. [Google Scholar] [CrossRef]
- Attiogbe, E.; Abolmaali, A.; Park, Y. Polypropylene fiber-reinforced concrete pipes under sustained loading. In Proceedings of the 9th RILEM International Symposium on Fiber Reinforced Concrete—BEFIB 2016, Vancouver, BC, Canada, 19–21 September 2016; pp. 1128–1138. [Google Scholar]
- Vasanelli, E.; Micelli, F.; Aiello, M.A.; Plizzari, G. Long term behavior of FRC flexural beams under sustained load. Eng. Struct. 2013, 56, 1858–1867. [Google Scholar] [CrossRef]
- Tan, K.H.; Paramasivam, P.; Tan, K.C. Instantaneous and long-term deflections of steel fiber reinforced concrete beams. ACI Struct. J. 1994, 91, 384–393. [Google Scholar]
- Tan, K.H.; Paramasivam, P.; Tan, K.C. Creep and shrinkage deflections of RC beams with steel fibers. J. Mater. Civ. Eng. 1994, 6, 474–494. [Google Scholar] [CrossRef]
- Tan, K.H.; Saha, M.K. Ten-year study on steel fiber-reinforced concrete beams under sustained loads. ACI Struct. J. 2005, 102, 472–480. [Google Scholar]
- Nakov, D.; Markovski, G.; Arangjelovski, T.; Mark, P. Creeping effect of SFRC elements under specific type of long term loading. In RILEM Bookseries; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Amin, A.; Foster, S.J.; Watts, M. Modelling the tension stiffening effect in SFR-RC. Mag. Concr. Res. 2016, 68, 339–352. [Google Scholar] [CrossRef]
- Amin, A.; Foster, S.J.; Kaufmann, W. Instantaneous deflection calculation for steel fibre reinforced concrete one way members. Eng. Struct. 2017, 131, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Banthia, N.; Gupta, R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- ACI Committee 544. Report on Fiber Reinforced Concrete; ACI: Farmington Hills, MI, USA, 2002. [Google Scholar]
- Bažant, Z.P.; Baweja, S. Creep and shrinkage prediction model for analysis and design of concrete structures—Model B3. Mater. Struct. 1995, 28, 357–365. [Google Scholar]
- Bažant, Z.P.; Li, G.H. NU-ITI Database on Concrete Creep and Shrinkage. Available online: http://iti.northwestern.edu/publications/bazant/index.html (accessed on 14 January 2017).
- FIB. fib Model Code for Concrete Structures 2010; International Federation for Structural Concrete (fib): Lausanne, Switzerland, 2013; ISBN 9783433604090. [Google Scholar]
- Bažant, Z.P.; Hubler, M.H.; Wendner, R. RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: Material model and structural analysis. Mater. Struct. 2015, 48, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.I.; Ranzi, G. Time-Dependent Behaviour of Conrete Structures; Spon Press: New York, NY, USA, 2011. [Google Scholar]
- Neville, A.M. Properties of Concrete; Pearson Education Ltd.: Harlow, UK, 1995. [Google Scholar]
- EN 14651 Test Method for Metallic Fibred Concrete—Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual); British Standards Institution: London, UK, 2005.
- Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; EN 1992-1-1; CEN: Brussels, Belgium, 2004; ISBN 978 0 580 62664 7.
- EHE. Instrucción de Hormigón Estructural (EHE-08); EHE: Madrid, Spain, 2008. [Google Scholar]
- ACI 318-14. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary; ACI: Farmington Hills, MI, USA, 2014. [Google Scholar]
- Kenel, A.; Nellen, P.; Frank, A.; Marti, P. Reinforcing steel strains measured by Bragg grating sensors. J. Mater. Civ. Eng. 2005, 17, 423–431. [Google Scholar] [CrossRef]
Topic/Group | No. of Studies/References |
---|---|
Total no. of studies | 72; [26,28,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103] |
Fiber level | 10; [28,34,35,36,37,38,39,40,41,42] |
Concrete level | 43; [28,37,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83] |
Structural level | 23; [26,44,45,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103] |
Ref. | FRC Type | Fiber Aspect Ratio | Vf | Specimens 1 (mm) | Pre-Crack Width (mm) | Load Level 2 | Climate (T & RH) 3 | Time (Days) |
---|---|---|---|---|---|---|---|---|
[37] | SFRC | 67 | 0.5% | 100/100/500 | 0.40–0.75 | 30–85% | – | 240 |
[49] | SFRC | 65 | 1.0% | Ø100/300 | 0.05; 0.20 | 30% 2 | 20 °C, 60% | 100 |
[50] | PPFRC | 50 | 1.0% | Ø100/300 | 0.20 | 30–45% | 20 °C, 60% | 180 |
[79] | PPFRC | 50 | 1.0% | 100/100/500 | 0.50 | 30–70% | 23 °C, 65% | 240 |
Ref. | fmax (MPa) | fR1 (MPa) | fR3 (MPa) | ϕw |
---|---|---|---|---|
[37] | 3.65 | 1.76 | 2.13 | 0.87–2.10 |
[49] | 6.84; 8.00 | 6.59; 7.50 | 6.02; 6.81 | 0.95–2.10 1 ~0.8–4.0 2 |
[50] | 3.70 | 1.78 | 2.05 | <1.00 3 ~9 4 |
[79] | ~3.00 | ~0.80 | ~1.00 | – |
Ref. | FRC Type | Fiber Aspect Ratio | Vf | Specimens (mm) and Test Type | Pre-Crack Width (mm) | Load Level | Climate (T and RH) | Time (Days) |
---|---|---|---|---|---|---|---|---|
[47] | PFRC | - | ~0.1% | 100/100/350 Cantilever | 0.75 | 22–88% | - | Until failure |
[48] | PPFRC | 50 | 1.0% | 100/100/500 4-point | 0.20 | 30–50% | 23 °C; 65% | 240 |
[53] | SFRC | - | 0.5 | 50–150/150/600 4-point | 0.50 | 60% | 23 °C | 110 |
[55] | SFRC | 45–80 | 0.5%; 0.9% | 150/150/600 4-point | 0.50 | 60%; 80% | - | 90 |
[56] | SFRC | 50 | 1.25% | 150/150/600 4-point | 0.05–0.50 | 25–45% | 22 °C | 180 |
[57] | SFRC | 50 | 0.50% | 150/150/600 4-point | 0.2–3.5 | 64–156% 1 | 16–23 °C; 22–64% | 630 |
[63] | SFRC | 44 | 1.0%; 2.0% | 50/50/650 3-point | – | 20% 1 | 23 °C | 120 |
[65] | SFRC | 65 | 1.90% | 40/80/1200 4-point | n/a 2 | 50% 2 | - | 150 |
[70] | SFRC; PPFRC | 44; 83 | 0.50% | 150/150/600 4-point | 0.25; 1.50; 2.50 | 40–70% | - | 90 |
[71] | SFRC; PPFRC | 50–160 | 0.50% | 150/150/600 4-point | 0.50 | 70% | 20 °C; 60% | 90 |
[78] | SFRC; PPFRC | 40–100 | 0.40% | 150/150/600 4- & 3-point | 0.50 | 50–70% | 21 °C | 290 |
[80] | SFRC; PFRC | - | ~0.40% | 100/100/500 4-point | 1.75 | 50%; 60% | 21 °C 3 | 3200 |
[83] | PFRC | 40–100 | 0.3–0.8% | 300/120/2000 3-point | 0.2 | 50% | 20–50 °C | 90 |
Ref. | Concrete Type | ρ1 | Vf | Member (mm) | Load Level 2 | Time (days) | Main Results |
---|---|---|---|---|---|---|---|
[88] | RC; R-SFRC 3 | 0.45%; 1.25% | 0.75%; 1.5% | 100/150/3000 beams | 0.60 | 180 | Deflections decrease with increasing Vf up to 0.75%, then remain ~constant |
[93] | RC; PPFRC | – | 0.40%; 0.80% | Ø600; Ø900 pipes | – 4 | 180 | Larger change of vertical displacements for PPFRC but stabilization over time; crack widths continued to increase |
[94] | R-PPFRC | 0.20% | 1.0% | Ø1200 pipes | 0.40 | 120 | Deflection increase over 5 days then stabilization; crack widths continued to increase |
[95] | RC; R-SFRC; R-PPFRC 5; R-MFRC 6 | 0.85% | ~0.5% 7 | 400/161/3500 beams | 0.30–0.50 | 240 | Deflections decrease in order of RC, R-PPFRC, R-MFRC, R-SFRC |
[96] | PPFRC | – | – | Ø600; Ø900 pipes | – 8 | 417 | Pre-cracking had a minor effect on the increase of pipe vertical deflection |
[97] | RC; R-SFRC; R-PPFRC | 0.9% | 0.6% 9; 0.9% 10 | 250/250/3000 beams | 0.50 | 300 | Presence of fibers decreases cracks |
[100] | RC; R-SFRC | 1.5% | 0–2% | 100/125/2000 beams | 0.50 | 365 | Deflections decrease with increasing Vf |
[101] | RC; R-SFRC | 0.37% | 0.8%; 1.6% | 150/280/3000 beams | 0.40–0.45 | 365 | Deflections decrease with increasing Vf; no clear trends for crack widths |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tošić, N.; Aidarov, S.; de la Fuente, A. Systematic Review on the Creep of Fiber-Reinforced Concrete. Materials 2020, 13, 5098. https://doi.org/10.3390/ma13225098
Tošić N, Aidarov S, de la Fuente A. Systematic Review on the Creep of Fiber-Reinforced Concrete. Materials. 2020; 13(22):5098. https://doi.org/10.3390/ma13225098
Chicago/Turabian StyleTošić, Nikola, Stanislav Aidarov, and Albert de la Fuente. 2020. "Systematic Review on the Creep of Fiber-Reinforced Concrete" Materials 13, no. 22: 5098. https://doi.org/10.3390/ma13225098
APA StyleTošić, N., Aidarov, S., & de la Fuente, A. (2020). Systematic Review on the Creep of Fiber-Reinforced Concrete. Materials, 13(22), 5098. https://doi.org/10.3390/ma13225098