Polarization-Selective Bidirectional Absorption Based on a Bilayer Plasmonic Metasurface
Abstract
:1. Introduction
2. Structure and Results
3. Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pendry, J.; Schurig, D.; Smith, D. Controlling Electromagnetic Fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.; Schuring, D.; Mock, J.; Justice, B.; Cummer, S.; Pendy, J.; Starr, A. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Wong, Z.; Mrejen, M.; Wang, Y.; Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 2015, 349, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Zeuner, F.; Li, X.; Reineke, B.; He, S.; Qiu, C.; Liu, J.; Wang, Y.; Zhang, S.; Zentgraf, T. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 2016, 7, 11930. [Google Scholar] [CrossRef] [PubMed]
- Walter, F.; Li, G.; Meier, C.; Zhang, S.; Zentgraf, T. Ultrathin Nonlinear Metasurface for Optical Image Encoding. Nano Lett. 2017, 17, 3171–3175. [Google Scholar] [CrossRef]
- Novotny, L.; Beversluis, M.; Youngworth, K.; Brown, T. Longitudinal Field Modes Probed by Single Molecules. Phys. Rev. Lett. 2001, 86, 5251–5254. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Shah, Y.; Grant, J.; Hao, D.; Kenney, M.; Pusino, V.; Cumming, D. Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface. ACS Photonics 2018, 5, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Pelzman, C.; Cho, S. Polarization-selective optical transmission through a plasmonic metasurface. Appl. Phys. Lett. 2015, 106, 251101. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, E.; Cadusch, J.; James, T.; Roberts, A. Plasmonic Metasurface-Enabled Differential Photodetectors for Broadband Optical Polarization Characterization. ACS Photonics 2016, 3, 1833–1839. [Google Scholar] [CrossRef]
- Wu, D.; Liu, C.; Liu, Y.; Xu, Z.; Yu, Z.; Yu, L.; Chen, L.; Ma, R.; Zhang, J.; Ye, H. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Adv. 2018, 8, 21054–21064. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Li, R.; Liu, Y.; Yu, Z.; Chen, L.; Ma, R.; Ye, H. Ultra-narrow Band Perfect Absorber and Its Application as Plasmonic Sensor in the Visible Region. Nanoscale Res. Lett. 2017, 12, 427. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Ren, G.; Hossain, M.; Nirantar, S.; Withayachumnankul, W.; Ahmed, T.; Bhaskaran, M.; Sriram, S.; Gu, M.; Fumeaux, C. Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling. Adv. Opt. Mater. 2017, 5, 1700460. [Google Scholar] [CrossRef]
- Feng, A.; Yu, Z.; Sun, X. Ultranarrow-band metagrating absorbers for sensing and modulation. Opt. Express 2018, 26, 28197–28205. [Google Scholar] [CrossRef]
- Takatori, K.; Okamoto, T.; Ishibashi, K. Surface-plasmon-induced ultra-broadband light absorber operating in the visible to infrared range. Opt. Express 2018, 26, 1342–1350. [Google Scholar] [CrossRef]
- Qin, M.; Xia, S.; Zhai, X.; Huang, Y.; Wang, L.; Liao, L. Surface enhanced perfect absorption in metamaterials with periodic dielectric nanostrips on silver film. Opt. Express 2018, 26, 30873–30881. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, Z.; Li, K.; Uggalla, L.; Huang, J.; Copner, N.; Zhou, Y.; Qiao, D.; Zhu, J. Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing. Opt. Lett. 2017, 42, 4537–4540. [Google Scholar] [CrossRef]
- Lee, D.; Han, S.; Jeong, Y.; Nguyen, D.; Yoon, G.; Mun, J.; Chae, J.; Lee, J.; Ok, J.; Jung, G.; et al. Polarization-sensitive tunable absorber in visible and near-infrared regimes. Sci. Rep. 2018, 8, 12393. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Xiao, Z.; Xu, K.; Ma, X.; Wang, Z. Polarization-Controlled Metamaterial Absorber with Extremely Bandwidth and Wide Incidence Angle. Plasmonics 2016, 11, 1393–1399. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, D.; Li, Q.; Qiu, M. Polarization-sensitive perfect absorbers at near-infrared wavelengths. Opt. Express 2013, 21, A111–A122. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Li, Q.; Hong, Y.; Cai, L.; Li, J.; Qiu, M. Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays. Opt. Express 2018, 26, 17772–17780. [Google Scholar] [CrossRef] [PubMed]
- Tuan, T.; Hoa, N. Defect induced co-polarization broadband metamaterial absorber. AIP Adv. 2019, 9, 055321. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A.; Cabrini, S.; Dhuey, S.; Harteneck, B.; Schuck, P.; Padmore, H. Plasmonic light trapping in nanostructured metal surfaces. Appl. Phys. Lett. 2011, 98, 084801. [Google Scholar] [CrossRef] [Green Version]
- Cao, A.; Zhang, K.; Zhang, J.; Liu, Y.; Kong, W. Actively tunable polarization-sensitive multiband absorber based on graphene. Chin. Phys. B 2020, 29, 114205. [Google Scholar] [CrossRef]
- Johnson, P.; Christy, R. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Lei, L.; Li, S.; Huang, H.; Tao, K.; Xu, P. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 2018, 26, 5686–5693. [Google Scholar] [CrossRef]
- Yangchuk, B.; Zheludev, N.; Maier, S.; Halas, N.; Nordlander, P.; Giessen, H.; Chong, C. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Wu, F.; Liu, L.; Feng, L.; Xu, D.; Lu, N. Improving the sensing performance of double gold gratings by oblique incident light. Nanoscale 2015, 7, 13026–13032. [Google Scholar] [CrossRef]
- Li, L.; Liang, Y.; Lu, M.; Peng, W. Fano Resonances in Thin Metallic Grating for Refractive Index Sensing with High Figure of Merit. Plasmonics 2015, 11, 139–149. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, L.; Ma, P.; Zhong, Y.; Liu, B.; Chen, X.; Liu, H. Metasurface generated polarization insensitive Fano resonance for high-performance refractive index sensing. Opt. Express 2019, 27, 13252–13262. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Yang, H.; Deng, Y.; Wu, D.; Zhou, X.; Wu, Y.; Cao, G.; Chen, J.; Sun, W.; Zhou, R. Ultra-compact high-sensitivity plasmonic sensor based on Fano resonance with symmetry breaking ring cavity. Opt. Express 2019, 27, 33359–33368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, W.; Li, Z.; Li, Z.; Cheng, H.; Chen, S.; Tian, J. High-quality-factor multiple Fano resonances for refractive index sensing. Opt. Lett. 2018, 43, 1842–1845. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, L.; Xiong, L.; Qi, L.; Li, B. High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric metamaterials. OSA Contin. 2019, 2, 2818–2825. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Chen, B.-Q.; He, Q.; Bian, L.-A.; Shang, X.-J.; Song, G.-F. Polarization-Selective Bidirectional Absorption Based on a Bilayer Plasmonic Metasurface. Materials 2020, 13, 5298. https://doi.org/10.3390/ma13225298
Li T, Chen B-Q, He Q, Bian L-A, Shang X-J, Song G-F. Polarization-Selective Bidirectional Absorption Based on a Bilayer Plasmonic Metasurface. Materials. 2020; 13(22):5298. https://doi.org/10.3390/ma13225298
Chicago/Turabian StyleLi, Tong, Bin-Quan Chen, Qian He, Li-An Bian, Xiong-Jun Shang, and Guo-Feng Song. 2020. "Polarization-Selective Bidirectional Absorption Based on a Bilayer Plasmonic Metasurface" Materials 13, no. 22: 5298. https://doi.org/10.3390/ma13225298
APA StyleLi, T., Chen, B. -Q., He, Q., Bian, L. -A., Shang, X. -J., & Song, G. -F. (2020). Polarization-Selective Bidirectional Absorption Based on a Bilayer Plasmonic Metasurface. Materials, 13(22), 5298. https://doi.org/10.3390/ma13225298