Degradation of Contaminants of Emerging Concern by Electrochemical Oxidation: Coupling of Ultraviolet and Ultrasound Radiations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Analytical Procedures
2.3. Experimental Procedures
3. Results and Discussion
3.1. Electrochemical Oxidation
3.2. Coupling of Irradiated Techniques
3.3. Kinetic, Efficiency, and Energy Consumptions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, L.L.; Anulacion, B.F.; Arkoosh, M.R.; Burrows, D.G.; da Silva, D.A.M.; Dietrich, J.P.; Myers, M.S.; Spromberg, J.; Ylitalo, G.M. 2—Effects of legacy persistent organic pollutants (pops) in fish—Current and future challenges. In Fish Physiology; Tierney, K.B., Farell, A.P., Colin, J.B., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 33, pp. 53–140. [Google Scholar]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21, 8336–8367. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Lopez, C.D.; Zafra-Calvo, M.; Martín de Vidales, M.J.; Blanco-Gutierrez, V.; Atanes-Sanchez, E.; Merayo, N.; Fernandez-Martinez, F.; Nieto-Marquez, A.; Dos Santos-Garcia, A.J. Synthesis of NiFe2O4-LDH Composites with High Adsorption and Photocatalytic Activity for Methyl Orange Degradation. Inorganics 2018, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Lorimer, J.P.; Mason, T.J.; Plattes, M.; Phull, S.S.; Iniesta, J.; Walton, D.J. Sonovoltammetric studies on copper in buffered alkaline solution. Ultrason. Sonochem. 2004, 11, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, D.J.; Suslick, K.S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 2005, 434, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Carretero, A.; Saez, C.; Cañizares, P.; Cotillas, S.; Rodrigo, M. Improvements in the electrochemical production of ferrates with conductive diamond anodes using goethite as raw material and ultrasound. Ind. Eng. Chem. Res. 2011, 50, 7073–7076. [Google Scholar] [CrossRef]
- Rooze, J.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F. Dissolved gas and ultrasonic cavitation—A review. Ultrason. Sonochem. 2013, 20, 1–11. [Google Scholar] [CrossRef]
- Osugi, M.E.; Umbuzeiro, G.A.; Anderson, M.A.; Zanoni, M.V.B. Degradation of metallophtalocyanine dye by combined processes of electrochemistry and photoelectrochemistry. Electrochim. Acta 2005, 50, 5261–5269. [Google Scholar] [CrossRef]
- Aoudj, S.; Khelifa, A.; Zemmouri, H.; Hamadas, I.; Yatoui, S.; Zabchi, N.; Drouiche, N. Degradation of edta in h2o2 -containing wastewater by photo-electrochemical peroxidation. Chemosphere 2018, 208, 984–990. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Phan, C.M.; Sen, T.; Hoang, S.A. Toc removal from laundry wastewater by photoelectrochemical process on fe2o3 nanostructure. Desalin. Water Treat. 2016, 57, 14379–14385. [Google Scholar] [CrossRef]
- Liu, C.F.; Huang, C.P.; Hu, C.C.; Juang, Y.; Huang, C. Photoelectrochemical degradation of dye wastewater on tio2-coated titanium electrode prepared by electrophoretic deposition. Sep. Purif. Technol. 2016, 165, 145–153. [Google Scholar] [CrossRef]
- Fan, X.; Zhou, Y.; Zhang, G.; Liu, T.; Dong, W. In situ photoelectrochemical activation of sulfite by mos2 photoanode for enhanced removal of ammonium nitrogen from wastewater. Appl. Catal. B Environ. 2019, 244, 396–406. [Google Scholar] [CrossRef]
- Martín de Vidales, M.J.; Millán, M.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Irradiated-assisted electrochemical processes for the removal of persistent pollutants from real wastewater. Sep. Purif. Technol. 2017, 175, 428–434. [Google Scholar] [CrossRef]
- Pinhedo, L.; Pelegrini, R.; Bertazzoli, R.; Motheo, A.J. Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode. Appl. Catal. B Environ. 2005, 57, 75–81. [Google Scholar] [CrossRef]
- Freitas, A.; Sirtori, C.; Peralta-Zamora, P. Photoelectrocatalytic degradation of camphor on TiO2/RuO2 electrodes. Environ. Chem. Lett. 2011, 9, 97–102. [Google Scholar] [CrossRef]
- Souza, F.L.; Sáez, C.; Cañizares, P.; Motheo, A.J.; Rodrigo, M.A. Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Appl. Catal. B Environ. 2014, 144, 121–128. [Google Scholar] [CrossRef]
- Moradi, M.; Vasseghian, Y.; Khataee, A.; Kobya, M.; Arabzade, H.; Dragoi, E.N. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. J. Ind. Eng. Chem. 2020, 87, 18–39. [Google Scholar] [CrossRef]
- Martín de Vidales, M.J.; Sáez, C.; Pérez, J.F.; Cotillas, S.; Llanos, J.; Cañizares, P.; Rodrigo, M.A. Irradiation-assisted electrochemical processes for the removal of persistent organic pollutants from wastewater. J. Appl. Electrochem. 2015, 45, 799–808. [Google Scholar] [CrossRef]
- Souza, F.L.; Sáez, C.; Cañizares, P.; Motheo, A.J.; Rodrigo, M.A. Sonoelectrolysis of Wastewaters Polluted with Dimethyl Phthalate. Ind. Eng. Chem. Res. 2013, 52, 9674–9682. [Google Scholar] [CrossRef]
- Pestana, D.; Faria, G.; Correia de Sá, C.; Fernandes, V.; Teixeira, D.; Norberto, S.; Faria, A.; Meireles, M.; Marques, C.; Correia-Sá, L.; et al. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals-depot differences and dysmetabolism implications. Environ. Res. 2014, 133C, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniakova, G.; Kowalska, K.; Murgolo, S.; Mascolo, G.; Libralato, G.; Lofrano, G.; Sacco, O.; Guida, M.; Rizzo, L. Comparison between heterogeneous and homogeneous solar driven advanced oxidation processes for urban wastewater treatment: Pharmaceuticals removal and toxicity. Sep. Purif. Technol. 2020, 236, 116249. [Google Scholar] [CrossRef]
- Westlund, P.; Yargeau, V. Investigation of the presence and endocrine activities of pesticides found in wastewater effluent using yeast-based bioassays. Sci. Total Environ. 2017, 607–608, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Cañizares, P.; Paz, R.; Lobato, J.; Sáez, C.; Rodrigo, M.A. Electrochemical treatment of the effluent of a fine chemical manufacturing plant. J. Hazard. Mater. 2006, 138, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. The fate of pharmaceuticals and personal care products (PPCPS), endocrine disrupting contaminants (EDCS), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Ferro, S.; De Battisti, A.; Duo, I.; Comninellis, C.; Haenni, W.; Perret, A. Chlorine evolution at highly boron-doped diamond electrodes. J. Electrochem. Soc. 2000, 147, 2614–2619. [Google Scholar] [CrossRef]
- Sánchez-Carretero, A.; Sáez, C.; Cañizares, P.; Rodrigo, M. Electrochemical production of perchlorates using conductive diamond electrolyses. Chem. Eng. J. 2011, 166, 710–714. [Google Scholar] [CrossRef]
- Polcaro, A.M.; Palmas, S.; Renoldi, F.; Mascia, M. On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J. Appl. Electrochem. 1999, 29, 147–151. [Google Scholar] [CrossRef]
- Cañizares, P.; Paz, R.; Sáez, C.; Rodrigo, M. Electrochemical oxidation of wastewaters polluted with aromatics and heterocyclic compounds. J. Electrochem. Soc. 2007, 154, E165. [Google Scholar] [CrossRef]
- Martín de Vidales, M.J.; Castro, M.P.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Radiation-assisted electrochemical processes in semi-pilot scale for the removal of clopyralid from soil washing wastes. Sep. Purif. Technol. 2019, 208, 100–109. [Google Scholar] [CrossRef]
- Martín de Vidales, M.J.; Millán, M.; Sáez, C.; Pérez, J.F.; Rodrigo, M.A.; Cañizares, P. Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater. Chemosphere 2015, 136, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Yasin, A.S.; Mohamed, A.Y.; Mohamed, I.M.A.; Cho, D.-Y.; Park, C.H.; Kim, C.S. Theoretical insight into the structure-property relationship of mixed transition metal oxides nanofibers doped in activated carbon and 3d graphene for capacitive deionization. Chem. Eng. J. 2019, 371, 166–181. [Google Scholar] [CrossRef]
- R.P.W. Rruff Project Web Site. Available online: http://rruff.Info/ (accessed on 15 October 2020).
- Marselli, B.; Garcia-Gomez, J.; Michaud, P.-A.; Rodrigo, M.; Comninellis, C. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 2003, 150, D79. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiatieli, J.; Liu, D.; Yu, F.; Xue, S.; Gao, W.; Li, Y.; Dionysiou, D.D. Microwave induced degradation of parathion in the presence of supported anatase- and rutile-TiO2/AC and comparison of their catalytic activity. Chem. Eng. J. 2013, 231, 84–93. [Google Scholar] [CrossRef]
- Kapałka, A.; Fóti, G.; Comninellis, C. Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. J. Appl. Electrochem. 2008, 38, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Jiang, C.; Chen, S.; Mei, R.; Wang, X.; Cao, J.; Zhiming, K. Ultrasound enhanced electrochemical oxidation of Alizarin Red S on boron doped diamond (BDD) anode: Effect of degradation process parameters. Chemosphere 2018, 209, 685–695. [Google Scholar] [CrossRef]
Process | [MR]0 (mg dm−3) | Current Density (mA cm−2) | Kinetic Constant (min−1) | Efficiency (dm3 A−1 h−1) |
---|---|---|---|---|
EO | 5 | 15 | 0.0135 | 1.19 |
EO | 2.5 | 15 | 0.0152 | 1.34 |
EO | 1 | 15 | 0.0817 | 7.44 |
EO | 5 | 5 | 0.0084 | 1.69 |
EO | 5 | 2 | 0.0034 | 2.39 |
Sono-EO | 5 | 15 | 0.0032 | 0.28 |
Photo-EO | 5 | 15 | 0.0018 | 0.16 |
Photocatalysis | 5 | - | 0.0016 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín de Vidales, M.J.; Rua, J.; Montero de Juan, J.L.; Fernández-Martínez, F.; Dos santos-García, A.J. Degradation of Contaminants of Emerging Concern by Electrochemical Oxidation: Coupling of Ultraviolet and Ultrasound Radiations. Materials 2020, 13, 5551. https://doi.org/10.3390/ma13235551
Martín de Vidales MJ, Rua J, Montero de Juan JL, Fernández-Martínez F, Dos santos-García AJ. Degradation of Contaminants of Emerging Concern by Electrochemical Oxidation: Coupling of Ultraviolet and Ultrasound Radiations. Materials. 2020; 13(23):5551. https://doi.org/10.3390/ma13235551
Chicago/Turabian StyleMartín de Vidales, María J., Jaime Rua, José Luis Montero de Juan, Francisco Fernández-Martínez, and Antonio J. Dos santos-García. 2020. "Degradation of Contaminants of Emerging Concern by Electrochemical Oxidation: Coupling of Ultraviolet and Ultrasound Radiations" Materials 13, no. 23: 5551. https://doi.org/10.3390/ma13235551
APA StyleMartín de Vidales, M. J., Rua, J., Montero de Juan, J. L., Fernández-Martínez, F., & Dos santos-García, A. J. (2020). Degradation of Contaminants of Emerging Concern by Electrochemical Oxidation: Coupling of Ultraviolet and Ultrasound Radiations. Materials, 13(23), 5551. https://doi.org/10.3390/ma13235551