Structural Dependent Eu3+ Luminescence, Photoelectric and Hysteresis Effects in Porous Strontium Titanate
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Porous Films and Powder Containing Strontium Titanate and Europium Ions
3.2. Heterostructures Si/SrTiO3/Ni and Si/TiOx/Pt/SrTiO3/Ni
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gonçalves, R.F.; Moura, A.P.; Godinho, M.J.; Longo, E.; Machado, M.A.C.; De Castro, D.A.; SiuLid, M.; Marques, A.P.A. Crystal growth and photoluminescence of the europium-doped strontium titanate prepared by a microwave hydrothermal method. Ceram. Int. 2015, 41, 3549–3554. [Google Scholar] [CrossRef]
- Rudenko, M.V.; Raichynok, T.F.; Radush, Y.V.; Podhorodecki, A.; Ilkov, V.K. Luminescence of porous nanostructured strontium titanate films doped with Eu3+ ions. Int. J. Nanosci. 2019, 18, 1940075. [Google Scholar] [CrossRef]
- Rudenko, M.V.; Raichenok, T.F.; Mukhin, N.V.; Gaponenko, N.V. Synthesis and photoluminescence of strontium titanate xerogels doped with terbium, ytterbium and europium. NATO Sci. Peace Secur. Ser. B Phys. Biophys. 2018, 435–437. [Google Scholar] [CrossRef]
- Rubano, A.; Scigaj, M.; Sánchez, F.; Herranz, G.; Paparo, D. Optical second harmonic generation from LaAlO3/SrTiO3 interfaces with different in-plane anisotropies. J. Phys. Condens. Matter 2020, 32, 135001. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, J.E.; Duncan, M.A.; Demkov, A.A. Designing near-infrared electro-optical devices from the SrTiO3 /LaAlO3 materials system. Opt. Mater. Express 2019, 9, 2982. [Google Scholar] [CrossRef]
- Luo, J.; Maggard, P.A. Hydrothermal synthesis and photocatalytic activities of SrTiO3-Coated Fe2O3 and BiFeO3. Adv Mater. 2006, 18, 514. [Google Scholar] [CrossRef]
- Xie, J.; Lei, K.; Wang, H.; Wang, C.; Liu, B.; Zhang, L.; Bai, P. Strontium titanate with inverse opal structure as the photocatalysts. J. Mater. Sci. Mater. Electron. 2020, 31, 2691–2698. [Google Scholar] [CrossRef]
- Schrott, A.G.; Misewich, J.A. Ferroelectric field-effect transistor with a SrRuxTi1−xO3 channel. Appl. Phys. Lett. 2003, 82, 4770. [Google Scholar] [CrossRef]
- Sohrabi Anaraki, H.; Gaponenko, N.V.; Rudenko, M.V.; Guk, A.F.; Zavadskij, S.M.; Golosov, D.A.; Kolosnitsyn, B.S.; Kolos, V.V.; Pyatlitskij, A.N.; Turtsevich, A.S. On the sol-gel synthesis of strontium-titanate thin films and the prospects of their use in electronics. Semiconductors 2014, 48, 1685–1687. [Google Scholar] [CrossRef]
- Ma, C.; Luo, Z.; Huang, W.; Zhao, L.; Chen, Q.; Lin, Y.; Liu, X.; Chen, Z.; Liu, C.; Sun, H.; et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. 2020, 11, 1439. [Google Scholar] [CrossRef]
- Funck, C.; Bäumer, C.; Wiefels, S.; Hennen, T.; Waser, R.; Hoffmann-Eifert, S.; Dittmann, R.; Menzel, S. Comprehensive model for the electronic transport in Pt/SrTiO3 analog memristive devices. Phys. Rev. B 2020, 102. [Google Scholar] [CrossRef]
- Rüdiger, A.; Schneller, T.; Roelofs, A.; Tiedke, S.; Schmitz, T.; Waser, R. Nanosize ferroelectric oxides–tracking down the superparaelectric limit. Appl. Phys. A 2005, 80, 1247–1255. [Google Scholar] [CrossRef]
- Wu, X.; Wu, D.; Liu, X. Negative pressure effects in SrTiO3 nanoparticles investigated by Raman spectroscopy. Solid State Comm. 2008, 145, 255–258. [Google Scholar] [CrossRef]
- Fomin, A.A.; Fomina, M.A.; Koshuro, V.A.; Rodionov, I.V.; Voiko, A.V.; Zakharevich, A.M.; Aman, A.; Oseev, A.; Hirsch, S.; Majcherek, S. Micro- and nanostructure of a titanium surface electric-spark-doped with tantalum and modified by high-frequency currents. Tech. Phys. Lett. 2016, 42, 932–935. [Google Scholar] [CrossRef]
- Fomin, A.A.; Steinhauer, A.B.; Rodionov, I.V.; Fomina, M.A.; Zakharevich, A.M.; Skaptsov, A.A.; Gribov, A.N.; Karsakova, Y.D. Properties of titanium dioxide coatings produced by induction-thermal oxidation of VT1-00 alloy. J. Frict. Wear 2014, 35, 32–39. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, Z.; Zhang, M. Study of photoluminescence and electronic states in nanophase strontium titanate. Appl. Phys. A 2000, 70, 93–96. [Google Scholar] [CrossRef]
- Kwun, S.; Song, T. Nano-size effects on the quantum paraelectric SrTiO3 fine particles. Ferroelectrics 1997, 197, 125–130. [Google Scholar] [CrossRef]
- Suzuki, N.; Osada, M.; Billah, M.; Abdullah Alothman, Z.; Bando, Y.; Yamauchi, Y.; Shahriar, A.; Hossain, M. Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating. APL Mater. 2017, 5, 076111. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.L. Preparation of porous nano-strontium titanate and its application in removal of heavy metals from environmental water. AMR 2011, 194–196, 765–768. [Google Scholar] [CrossRef]
- Feng, L.-L.; Zou, X.; Zhao, J.; Zhou, L.-J.; Wang, D.-J.; Zhang, X.; Li, G.-D. Nanoporous Sr-rich strontium titanate: A stable and superior photocatalyst for H2 evolution. Chem. Commun. 2013, 49, 9788–9790. [Google Scholar] [CrossRef]
- Sharma Pramod, K.; Varadan, V.V.; Varadan, V.K. Porous behavior and dielectric properties of barium strontium titanate synthesized by sol−gel method in the presence of triethanolamine. Chem. Mater. 2000, 12, 2590–2596. [Google Scholar] [CrossRef]
- Tikhov, S.V.; Gorshkov, O.N.; Pavlov, D.A.; Antonov, I.N.; Bobrov, A.I.; Kasatkin, A.P.; Koryazhkina, M.N.; Shenina, M.E. Capacitors with nonlinear characteristics based on stabilized zirconia with built-in gold nanoparticles. Tech. Phys. Lett. 2014, 40, 369–371. [Google Scholar] [CrossRef]
- Dedyk, A.I.; Semenov, A.A.; Pavlova, Y.V.; Belyavskii, P.Y.; Nikitin, A.A.; Pakhomov, O.V.; Myl’nikov, I.L. Photoelectrical properties of strontium titanate. Tech. Phys. 2015, 60, 624–627. [Google Scholar] [CrossRef]
- Youssef, A.M.; Farag, H.K.; El-Kheshen, A.; Hammad, F.F. Synthesis of nano-structured strontium titanate by sol-gel and solid state routes. Silicon 2018, 10, 1225–1230. [Google Scholar] [CrossRef]
- Tolstykh, N.A.; Korotkova, T.N.; Jaafari, F.D.; Kashirin, M.A.; Fedotova, Y.A.; Yemelyanov, N.A.; Korotkov, L.N.; Kasyuk, Y.V. Dielectric and magnetic properties of nanocrystal barium titanate, strontium titanate, and a blended nanocomposite based on them. Bull. Russ. Acad. Sci. Phys. 2019, 83, 1086–1090. [Google Scholar] [CrossRef]
- Sohrabi Anaraki, H.; Gaponenko, N.V.; Rudenko, M.V.; Kolos, V.V.; Petlitskii, A.N.; Turtsevich, A.S. Thin-film capacitor based on the strontium titanate formed by the sol-gel technique. Russ. Microelectron. 2015, 44, 425–429. [Google Scholar] [CrossRef]
- Rudenko, M.V.; Kortov, V.S.; Gaponenko, N.V.; Mudryi, A.V.; Zvonarev, S.V. Photo- and cathode luminescence of strontium titanate xerogel films doped with terbium ions. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2015, 9, 1012–1015. [Google Scholar] [CrossRef]
- Mizera, A.; Drożdż, E.; Łańcucki, Ł. Synthesis of highly porous SrTiO3 materials. Acta Phys. Pol. A 2018, 133, 873–875. [Google Scholar] [CrossRef]
- Lee, J.-T.; Wey, M.-Y. PVA/Pt/N-TiO2/SrTiO3 porous films with adjustable pore size for hydrogen production under simulated sunlight. J. Colloid Interface Sci. 2020, 573, 158–164. [Google Scholar] [CrossRef]
- Li, S.; Li, M.; Tao, A.; Song, M.; Wang, B.; Niu, J.; Yu, F.; Wu, Y. Synthesis of a bicontinuous structured SrTiO3 porous film with significant photocatalytic activity by controlling phase separation process. J. Sol-Gel Sci. Technol. 2020, 94, 288–297. [Google Scholar] [CrossRef]
- Ujiie, K.; Kojima, T.; Ota, K.; Phuenhinlad, P.; Pleuksachat, S.; Meethong, N.; Itoi, T.; Uekawa, N. Preparation of spherical and porous strontium titanate particles by hot water and hydrothermal conversion of hydrous titania. Ceram. Int. 2020, 46, 6146–6153. [Google Scholar] [CrossRef]
- Litvinov, V.G.; Ermachikhin, A.V.; Kusakin, D.S.; Vishnyakov, N.V.; Gudzev, V.V.; Karabanov, A.S.; Karabanov, S.M.; Vikhrov, S.P. Investigation of deep-level defects lateral distribution in active layers of multicrystalline silicon solar cells. MRS Adv. 2017, 2, 3141–3146. [Google Scholar] [CrossRef]
- Shyamal, S.; Hajra, P.; Paramita, M.; Harahari, B.; Aparajita, S.; Sariket, D.; Satpati, A.; Malashchonak, M.; Mazanik, A.; Korolik, O.; et al. Eu modified Cu2O thin films: Significant enhancement in efficiency of photoelectrochemical processes through suppression of charge caarier recombination. Chem. Eng. J. 2018, 335, 676–684. [Google Scholar] [CrossRef]
- Zulueta, Y.A.; Lim, T.C.; Dawson, J.A. Defect clustering in rare-earth-doped BaTiO3 and SrTiO3 and its influence on dopand incorporation. J. Phys. Chem. C. 2017, 121, 23642–23648. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Podhorodecki, A.; Banski, M.; Misiewicz, J.; Serafińczuk, J.; Gaponenko, N.V. Influence of annealing on excitation of terbium luminescence in YAlO3 films deposited onto porous anodic alumina. J. Electrochem. Soc. 2010, 157, H628–H632. [Google Scholar] [CrossRef]
- Kenyon, A.J. Recent developments in rare-earth doped materials for optoelectronics. Progr. Quantum Electron. 2002, 26, 225–284. [Google Scholar] [CrossRef]
- Strek, W.; Hreniak, D.; Boulon, G.; Guyot, Y.; Pązik, R. Optical behavior of Eu3+-doped BaTiO3 nano-crystallites prepared by sol–gel method. Opt. Mater. 2003, 24, 15–22. [Google Scholar] [CrossRef]
- Villegas Brito, J.C.; Gaponenko, N.V.; Sukalin, K.S.; Raichenok, T.F.; Tikhomirov, S.A.; Yankovskaya, V.A.; Kargin, N.I. Luminescence of Eu3+ in Yttrium–Alumina Films on Fused Silica Substrates. J. Appl. Spectrosc. 2017, 84, 674–678. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Cormack, A.; Zych, E.; Seo, H.J.; Wu, Y. Theoretical analysis and experiment on Eu reduction in alumina optical materials. Opt. Mater. Express 2016, 6, 2404. [Google Scholar] [CrossRef]
- Ahadi, K.; Gui, Z.; Porter, Z.; Lynn, J.W.; Xu, Z.; Wilson, S.D.; Janotti, A.; Stemmer, S. Carrier density control of magnetism and Berry phases in doped EuTiO3. APL Mater. 2018, 6, 56105. [Google Scholar] [CrossRef]
- Jiang, C.; Fang, L.; Shen, M.; Zheng, F.; Wu, X. Effects of Eu substituting positions and concentrations on luminescent, dielectric, and magnetic properties of SrTiO3 ceramics. Appl. Phys. Lett. 2009, 94, 71110. [Google Scholar] [CrossRef]
- García, C.R.; Oliva, J.; Romero, M.T.; Ochoa-Valiente, R.; Trujillo, L.A.G. Effect of Eu3+ Concentration on the Luminescent Properties of SrTiO3 Phosphors Prepared by Pressure-Assisted Combustion Synthesis. Adv. Mater. Sci. Eng. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Chand, S.; Chopra, A.; Singh, I. Enhanced Red Emission from SrTiO3:Eu3+ [Li+, Na+, K+] Nano-Phosphors Prepared by Combustion Synthesis. JCCS 2017, 7, 1283–1289. [Google Scholar] [CrossRef]
- Balachandran, U.; Eror, N.G. Raman spectra of titanium dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Moreira, M.L.; Longo, V.M.; Avansi, W., Jr.; Ferrer, M.M.; Andrés, J.; Mastelaro, V.R.; Varela, J.A.; Longo, É. Quantum mechanics insight into the microwave nucleation of SrTiO3 nanospheres. J. Phys. Chem. C 2012, 116, 24792–24808. [Google Scholar] [CrossRef]
- Yuzyuk, Y.I. Raman scattering spectra of ceramics, films, and superlattices of ferroelectric perovskites: A review. Phys. Solid State 2012, 54, 1026–1059. [Google Scholar] [CrossRef]
- Da Silva, L.F.; Avansi, W.; Andres, J.; Ribeiro, C.; Moreira, M.L.; Longo, E.; Mastelaro, V.R. Long-range and short-range structures of cube-like shape SrTiO3 powders: Microwave-assisted hydrothermal synthesis and photocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 12386. [Google Scholar] [CrossRef]
- Rieder, K.H.; Migoni, R.; Renker, B. Lattice dynamics of strontium oxide. Phys. Rev. B Condens. Matter 1975, 12, 3374. [Google Scholar] [CrossRef]
- Dennison, J.R.; Holtz, M.; Swain, G. Raman spectroscopy of carbon materials. Spectroscopy 1996, 11, 38–45. [Google Scholar]
- Dorofeev, A.M.; Gaponenko, N.V.; Bondarenko, V.P.; Bachilo, E.E.; Kazuchits, N.M.; Leshok, A.A.; Troyanova, G.N.; Vorosov, N.N.; Borisenko, V.E. Erbium luminescence in porous silicon doped from spin-on films. J. Appl. Phys. 1995, 77, 2679. [Google Scholar] [CrossRef]
- Gaponenko, N.V.; Gnaser, H.; Becker, P.; Grozhik, V.A. Carbon depth distribution in spin-on silicon dioxide films. Thin Solid Films 1995, 261, 186–191. [Google Scholar] [CrossRef]
- Rudenko, M.V.; Kholov, P.A.; Gaponenko, N.V.; Mukhin, N.V.; Ivanov, V.A.; Stas’kov, N.I. Photocurrent hysteresis of sol-gel derived strontium titanate films on silicon. Int. J. Nanosci. 2019, 18, 1940090. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudenko, M.; Gaponenko, N.; Litvinov, V.; Ermachikhin, A.; Chubenko, E.; Borisenko, V.; Mukhin, N.; Radyush, Y.; Tumarkin, A.; Gagarin, A. Structural Dependent Eu3+ Luminescence, Photoelectric and Hysteresis Effects in Porous Strontium Titanate. Materials 2020, 13, 5767. https://doi.org/10.3390/ma13245767
Rudenko M, Gaponenko N, Litvinov V, Ermachikhin A, Chubenko E, Borisenko V, Mukhin N, Radyush Y, Tumarkin A, Gagarin A. Structural Dependent Eu3+ Luminescence, Photoelectric and Hysteresis Effects in Porous Strontium Titanate. Materials. 2020; 13(24):5767. https://doi.org/10.3390/ma13245767
Chicago/Turabian StyleRudenko, Maryia, Nikolai Gaponenko, Vladimir Litvinov, Alexander Ermachikhin, Eugene Chubenko, Victor Borisenko, Nikolay Mukhin, Yuriy Radyush, Andrey Tumarkin, and Alexander Gagarin. 2020. "Structural Dependent Eu3+ Luminescence, Photoelectric and Hysteresis Effects in Porous Strontium Titanate" Materials 13, no. 24: 5767. https://doi.org/10.3390/ma13245767
APA StyleRudenko, M., Gaponenko, N., Litvinov, V., Ermachikhin, A., Chubenko, E., Borisenko, V., Mukhin, N., Radyush, Y., Tumarkin, A., & Gagarin, A. (2020). Structural Dependent Eu3+ Luminescence, Photoelectric and Hysteresis Effects in Porous Strontium Titanate. Materials, 13(24), 5767. https://doi.org/10.3390/ma13245767