Self-Etch Silane Primer: Reactivity and Bonding with a Lithium Disilicate Ceramic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silane Stability
2.2. Silane Status and Reactivity
2.3. Effect on Ceramic Surface Roughness
2.4. Bond Strength
2.5. Statistical Analysis
3. Results
3.1. Silane Stability
3.2. Silane Reactivity
3.3. Effect on Ceramic Surface Roughness
3.4. Bond Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zohairy, A.E.; Feilzer, A.J. Bonding in prosthodontics with cements. In Dental Hard Tissues and Bonding; Eliades, G., Eliades, T., Watts, D., Eds.; Springer: Heidelberg, Germany, 2005; pp. 155–173. [Google Scholar]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-ceramic bonding: a review of the literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankenberger, R.; Hartmann, V.E.; Krech, M.; Krämer, N.; Reich, S.; Braun, A.; Roggendorf, M. Adhesive luting of new CAD/CAM materials. Int. J. Comput. Dent. 2015, 18, 9–20. [Google Scholar] [PubMed]
- Lee, Y.; Chae, M.; Kim, K.H.; Kwon, T.Y. Effect of dental silane primer activation time on resin–ceramic bonding. J. Adhes. Sci. Technol. 2015, 29, 1155–1167. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar] [CrossRef] [Green Version]
- Pilo, R.; Dimitriadi, M.; Palaghia, A.; Eliades, G. Effect of tribochemical treatments and silane reactivity on resin bonding to zirconia. Dent. Mater. 2018, 34, 306–316. [Google Scholar] [CrossRef]
- Yao, C.; Yu, J.; Wang, Y.; Tang, C.; Huang, C. Acidic pH weakens the bonding effectiveness of silane contained in universal adhesives. Dent. Mater. 2018, 34, 809–818. [Google Scholar] [CrossRef]
- Dimitriadi, M.; Panagiotopoulou, A.; Pelecanou, M.; Yannakopoulou, K.; Eliades, G. Stability and reactivity of γ-MPTMS silane in some commercial primer and adhesive formulations. Dent. Mater. 2018, 34, 1089–1101. [Google Scholar] [CrossRef]
- Dimitriadi, M.; Zafiropoulou, M.; Zinelis, S.; Silikas, N.; Eliades, G. Silane reactivity and resin bond strength to lithium disilicate ceramic surfaces. Dent. Mater. 2019, 35, 1082–1094. [Google Scholar] [CrossRef]
- Monobond Etch and Prime. Scientific Documentation, Ivoclar Vivadent. Available online: https://www.ivoclarvivadent.com/en/download-center/scientific-documentations/#M (accessed on 26 December 2019).
- Monobond Etch and Prime. Safety Data Sheet-version 3, Ivoclar Vivadent. Available online: https://www.ivoclarvivadent.com/en/download-center/msds/#M (accessed on 26 December 2019).
- Wille, S.; Lehmann, F.; Kern, M. Durability of resin bonding to lithium disilicate and zirconia ceramic using a self-etching primer. J. Adhes. Dent. 2017, 19, 491–496. [Google Scholar]
- Tribst, J.P.M.; Anami, L.C.; Özcan, M.A.; Bottino, M.A.; Melo, R.M.; Saavedra, G.S.F.A. Self-etching primers vs. acid conditioning: Impact on bond strength between ceramics and resin cement. Oper. Dent. 2018, 43, 372–379. [Google Scholar] [CrossRef]
- Lyann, S.K.; Takagaki, T.; Nikaido, T.; Uo, M.; Ikeda, M.; Sadr, A.; Tagami, J. Effect of different surface treatments on the tensile bond strength to lithium disilicate glass ceramics. J. Adhes. Dent. 2018, 20, 261–268. [Google Scholar] [PubMed]
- El-Damanhoury, H.M.; Gaintantzopoulou, M.D. Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J. Prosthodont. Res. 2018, 62, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Swank, H.M.; Motyka, N.C.; Bailey, C.W.; Kraig, S.; Vandewalle, K.S. Bond strength of resin cement to ceramic with simplified primers and pretreatment solutions. Gen. Dent. 2018, 66, 33–37. [Google Scholar] [PubMed]
- Prado, M.; Prochnow, C.; Marchionatti, A.M.E.; Baldissara, P.; Valandro, L.F.; Wandscher, V.F. Ceramic surface treatment with a single-component primer: resin adhesion to glass ceramics. J. Adhes. Dent. 2018, 20, 99–105. [Google Scholar] [PubMed]
- Lopes, G.C.; Perdigão, J.; Baptista, D.; Ballarin, A. Does a self-etching ceramic primer improve bonding to lithium disilicate ceramics? Bond strengths and FESEM analyses. Oper. Dent. 2019, 44, 210–218. [Google Scholar] [CrossRef]
- Grégoire, G.; Poulet, P.P.; Sharrock, P.; Destruhaut, F.; Tavernier, B. Hydrofluoric acid etching versus self-etching glass ceramic primer: consequences on the interface with resin cements. Oral Health Care 2019, 4, 1–7. [Google Scholar] [CrossRef]
- Nishiyama, N.; Horie, K.; Asakura, T. Hydrolysis and condensation mechanisms of a silane coupling agent studied by 13C and 29Si NMR. J. Appl. Polym. Sci. 1987, 34, 1619–1630. [Google Scholar] [CrossRef]
- ISO 29022:2013. Dentistry-adhesion-notched-edge shear bond strength; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- Díaz-Benito, B.; Velasco, F.; Martínez, F.J.; Encinas, N. Hydrolysis study of bis1,2-(triethoxysilyl)ethane silane by NMR. Colloids Surf. A 2010, 369, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Pu, Z.; van Ooij, W.J.; Mark, J.E. Hydrolysis kinetics and stability of bis(triethoxysilyl)ethane in water-ethanol solution by FTIR spectroscopy. J. Adhes. Sci. Technol. 1997, 11, 29–47. [Google Scholar]
- Brochier-Salon, M.C.; Bayle, P.A.; Abdelmouleh, M.; Boufi, S.; Belgacem, M.N. Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids Surf. A 2008, 312, 83–91. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lung, C.Y.K.; Hon, J.K.T. Silane adhesion mechanism in dental applications and surface treatments: a review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Arkles, B.; Pan, Y.; Larson, G.L.; Singh, M. Enhanced hydrolytic stability of siliceous surfaces modified with pendant dipodal silanes. Chem. Eur. J. 2014, 20, 9442–9450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Ooij, W.J.; Zhu, D.; Stacy, M.; Seth, A.; Mugada, T.; Gandhi, J.; Puomi, P. Corrosion protection properties of organofunctional silanes-an overview. Tsinghua Sci. Technol. 2005, 10, 639–664. [Google Scholar] [CrossRef]
- Pan, G.; Kim, H.; Kent, M.S.; Majewski, J.; Schaefer, D.W. Effect of bridging group on the structure of bis-silane water-barrier films. In Silanes and Other Coupling Agents; Mittal, K.L., Ed.; VSP: Utrecht, The Netherlands, 2004; pp. 39–50. [Google Scholar]
- Antonucci, J.M.; Dickens, S.H.; Fowler, B.O.; Xu, H.H.; McDonough, W.G. Chemistry of silanes: interfaces in dental polymers and composites. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Farahani, M.; Wallace, W.W.; Antonucci, J.M.; Guttman, C.M. Analysis by mass spectrometry of the hydrolysis/condensation reaction of a trialkoxysilane in various dental monomer solutions. J. Appl. Polym. Sci. 2006, 99, 1842–1847. [Google Scholar] [CrossRef]
- Anagnostopoulos, T.; Eliades, G.; Palaghias, G. Composition, reactivity and surface interactions of three dental silane primers. Dent. Mater. 1993, 9, 182–190. [Google Scholar] [CrossRef]
- Osterholtz, F.D.; Pohl, E.R. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J. Adhes. Sci. Technol. 1992, 6, 127–149. [Google Scholar] [CrossRef]
- Glowacky, J.; Heißler, S.; Boese, M.; Leiste, H.; Koker, T.; Faubel, W.; Gerdes, A.; Müller, H.S. Investigation of siloxane film formation on functionalized Germanium crystals by atomic force microscopy and FTIR-ATR spectroscopy. In Hydrophobe V, Proceedings of the 5th International Conference on Water Repellent Treatment of Building Materials, Brussels, Belgium, 15–16 April 2008; de Clerc, H., Charola, A.E., Eds.; Aedificatio Publishers: Freiburg, Germany, 2008; pp. 219–232. [Google Scholar]
- Pande, A.A.; Levitin, G.; Mui, D.S.L.; Hess, D.W. Design of a novel wet-etch reactor and etch chemisties: simulations and experimental verification. ECS Transactions 2010, 28, 109–118. [Google Scholar]
- Plueddemann, E.P. Silane Coupling Agents; Springer Science+Business Media LLC: New York, NY, USA, 1991. [Google Scholar]
- Nishiyama, N.; Ishizaki, T.; Horie, K.; Tomari, M.; Someya, M. Novel polyfunctional silanes for improved hydrolytic stability at the polymer-silica interface. J. Biomed. Mater. Res. 1991, 25, 213–221. [Google Scholar] [CrossRef]
- Hooshmand, T.; van Noort, R.; Keshvad, A. Storage effect of a pre-activated silane on the resin to ceramic bond. Dent. Mater. 2004, 20, 635–642. [Google Scholar] [CrossRef]
- Craig, R.G.; Dootz, E.R. Effect of mixed silanes on the hydrolytic stability of composites. J. Oral. Rehab. 1996, 23, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dibenedetto, A.T. A Modified silane treatment for superior hydrolytic stability of glass reinforced composites. J. Adhes. 1998, 68, 183–201. [Google Scholar] [CrossRef]
- Arksornnukit, M.; Takahashi, H.; Nishiyama, N. Effects of silane coupling agent amount on mechanical properties and hydrolytic durability of composite resin after hot water storage. Dent. Mater. J. 2004, 23, 31–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillaguet, S.; Schütt, A.; Alander, P.; Schwaller, P.; Buerki, G.; Michler, J.; Cattani-Lorente, M.; Vallittu, P.; Krejci, I. Hydrothermal and mechanical stresses degrade fiber-matrix interfacial bond strength in dental fiber-reinforced composites. J. Biomed. Mater. Res. B: Appl. Biomater. 2006, 76, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaferani, S.H.; Peikari, M.; Zaarei, D.; Danaee, I.; Fakhraei, J.M.; Mohammadi, M. Using silane films to produce an alternative for chromate conversion coatings. Corrosion 2013, 69, 372–387. [Google Scholar] [CrossRef]
- Queiroz, J.R.; Benetti, P.; Özcan, M.; de Oliveira, L.F.; Della Bona, A.; Takahashi, F.E.; Bottino, M.A. Surface characterization of feldspathic ceramic using ATR FT-IR and ellipsometry after various silanization protocols. Dent. Mater. 2012, 28, 189–196. [Google Scholar] [CrossRef] [Green Version]
- van Ooij, W.J.; Zhu, D.Q.; Prasad, G.; Jayaseelan, S.; Fu, Y.; Teredesai, N. Silane based chromate replacements for corrosion control, paint adhesion and rubber bonding. Surf. Engin. 2000, 15, 386–396. [Google Scholar] [CrossRef]
- Lim, K.; Yap, A.U.; Agarwalla, S.V.; Tan, K.B.; Rosa, V. Reliability, failure probability and strength of resin-based materials for CAD/CAM restorations. J. Appl. Oral. Sci. 2016, 24, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Sumino, N.; Tsubota, K.; Takamizawa, T.; Shiratsuchi, K.; Miyazaki, M.; Latta, M.A. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol. Scand. 2013, 71, 820–827. [Google Scholar] [CrossRef]
- DeHoff, P.H.; Anusavice, K.J.; Wang, Z. Three-dimensional finite element analysis of the shear bond test. Dent. Mater. 1995, 11, 126–131. [Google Scholar] [CrossRef]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: a review. Dent. Mater. 1995, 11, 117–125. [Google Scholar] [CrossRef]
- Della Bona, A.; van Noort, R. Shear vs. tensile bond strength of resin composite bonded to ceramic. J. Dent. Res. 1995, 74, 1591–1596. [Google Scholar] [CrossRef] [PubMed]
- Derbanne, A.M. Massive evaluation of dental adhesives: The battle of the bonds. In Proceedings of the 45th AADR/CADR Meeting, Los Angeles, CA, USA, 16–19 March 2016. Abstr 1658. [Google Scholar] [CrossRef]
- Bouillaguet, S.; Degrange, M.; Cattani, M.; Godini, C.; Meyer, J.M. Bonding to dentin achieved by general practitioners. Schweiz Monatsschr. Zahnmed. 2002, 112, 1006–1111. [Google Scholar] [PubMed]
- McCabe, J.; Walls, A. The treatment of results for tensile bond strength testing. J. Dent. 1986, 14, 165–168. [Google Scholar] [CrossRef]
Product | Composition * | Manufacturer |
---|---|---|
1. Ceramic | ||
IPS e.max Press | SiO2, Li2O, K2O, P2O5, ZrO2, ZnO, Al2O3, MgO, La2O3 | Ivoclar Vivadent, Schaan, Liechtenstein |
2. Etchant | ||
IPS Ceramic Etching Gel | 4.9% HF acid, water, colorant (pH = 2) | Ivoclar Vivadent, Schaan, Liechtenstein |
3. Silane | ||
Calibra Silane Coupling Agent (code: CLB) | MPTMS, ethanol, acetone | Dentsply Caulk Milford, DE, USA |
Monobond Etch and Prime (code: MEP) | TADF, silane methacrylate, BTSE, methacrylated phosphoric acid ester, butanol, water, colorant (pH = 3.7) | Ivoclar Vivadent, Schaan, Liechtenstein |
4. Resin composite | ||
G-aenial Flo Universal (A2 shade) | Resin: UEDMA, TEGDMA, BisEMA Filler: Silanated 0.2 μm Sr-glass, 16 nm SiO2 (69 wt%, 50 vol%) | GC Corp., Tokyo, Japan |
Treatment | Sa (nm) | Sz (μm) | Sdr (%) | Sc (nm3/nm2) | Sv (nm3/nm2) |
---|---|---|---|---|---|
REF | 81.2 a (17.6) | 0.7 a (0.1) | 1.5 a (0.9–1.7) | 112.4 a (24.5) | 13.3 a (3.7) |
HF | 425 b (30.9) | 4.5 b (0.4) | 106.1b (100.5–133.1) | 537.2 b (68.5) | 80 b (13) |
HF+CLB | 398 b (41.4) | 3.9 b (0.6) | 94.6b (86.5–144.6) | 510.8 b (83.7) | 85.8 b (21) |
MEP | 184.2 c (73.7) | 2.3 c (0.4) | 5.6 a (3.1–6.7) | 368.1 c (93.9) | 21.6 c (4.7) |
HF+MEP | 363.3 b (107.5) | 3.7 b (0.2) | 71.6b (56.7–101.2) | 462 b,c (162.9) | 69.1 b (9.8) |
Treatment | Median (25%–75% percentiles) MPa | Weibull β (95% C.I.) | Weibull σ0 (95% C.I.) MPa | Weibull r2 (η) | Weibull σ0.05 (95% C.I) MPa | Adhesive Failures n, (%) |
---|---|---|---|---|---|---|
Storage A: 37 °C/1 week | ||||||
HF+CLB | 31.5 a,A (23.5–38) | 4.4 a,A (3.2–6.3) | 34 a,A (30.6–37.7) | 0.93 | 18.1 a,A (11.6–23.5) | 4 (20) |
MEP | 20.4 b,A (16.9–25.3) | 4.2 a,A (3–5.8) | 23.6 b,A (21.1–26.3) | 0.94 | 12.4 a,A (7.8–16.1) | 8 (40) |
HF+MEP | 37.6 a,A (23–44.4) | 4 a,A (2.8–5.8) | 39.7 a,A (35.4–44.5) | 0.91 | 18.1 a,A (10.3–25.4) | 5 (25) |
HF+NS | 20.6 b,A (16.1–23.1) | 4.6 a,A (3.3–6.4) | 22.5 b,A (20.3–24.9) | 0.91 | 12.8 a,A (8.7–16.2) | 6 (30) |
Storage B: Thermal cycling (5000×/5–55 °C) | ||||||
HF+CLB | 18.4 a,B (14.9–22.5) | 4.6 a,b,A (3.1–7) | 20 a,B (17.8–22.6) | 0.98 | 10.1 a,c,A (5.6–14.2) | 9 (45) |
MEP | 3.6 b,B (3–6) | 2.4 a,A (1.6–3.6) | 5 b,B (4–6.2) | 0.93 | 1.5 b,B (0.5–2.7) | 14 (70) |
HF+MEP | 19.1 a,B (16.8–21.2) | 7.4 b,A (5–11.1) | 27.5 a,B (25.4–29.7) | 0.94 | 13.6 a,A (9.8–16.5) | 7 (35) |
HF+NS | 8.6 c,B (7.4–10.7) | 3.8 a,b,A (2.5–6) | 10.7 c,B (9.1–12.8) | 0.95 | 4.2 b,c,B (1.9–7.4) | 16 (80) |
Storage C: 100 °C/24 h | ||||||
HF+CLB | 21.1 a,B (17.8–29.3) | 3.5 a,A (2.4–4.9) | 25.6a,B (22.5–29.2) | 0.94 | 11.4 a,A (6.5–16.2) | 7 (35) |
MEP | 5.1 b,B (3.8–6.3) | 2.1 a,A (1.5–2.8) | 6.1 b,B (4.9–7.6) | 0.97 | 1.7 b,B (0.7–5) | 15 (75) |
HF+MEP | 28 a,A (19.8–30.4) | 2.6 a,A (1.9–3.7) | 29.5 a,B (24.7–35.1) | 0.92 | 10 a,A (6.9–15.1) | 8 (40) |
HF+NS | 12.2 c,B (9.6–16.7) | 2.9 a,A (2.1–4.1) | 14.7 c,B (12.4–17.3) | 0.94 | 5.6 a,B (2.8–8.4) | 12 (60) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadi, M.; Zinelis, S.; Zafiropoulou, M.; Silikas, N.; Eliades, G. Self-Etch Silane Primer: Reactivity and Bonding with a Lithium Disilicate Ceramic. Materials 2020, 13, 641. https://doi.org/10.3390/ma13030641
Dimitriadi M, Zinelis S, Zafiropoulou M, Silikas N, Eliades G. Self-Etch Silane Primer: Reactivity and Bonding with a Lithium Disilicate Ceramic. Materials. 2020; 13(3):641. https://doi.org/10.3390/ma13030641
Chicago/Turabian StyleDimitriadi, Maria, Spiros Zinelis, Maria Zafiropoulou, Nikolaos Silikas, and George Eliades. 2020. "Self-Etch Silane Primer: Reactivity and Bonding with a Lithium Disilicate Ceramic" Materials 13, no. 3: 641. https://doi.org/10.3390/ma13030641
APA StyleDimitriadi, M., Zinelis, S., Zafiropoulou, M., Silikas, N., & Eliades, G. (2020). Self-Etch Silane Primer: Reactivity and Bonding with a Lithium Disilicate Ceramic. Materials, 13(3), 641. https://doi.org/10.3390/ma13030641