A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Spectroscopy
2.3. Cell Imaging
2.4. Cell Viability
2.5. Photostability
3. Results
3.1. Synthesis and Photophysical Studies of LD-TB
3.2. LD-TB Stains Specifically Lipid Droplets in Cells
3.3. LD-TB is Not Cytotoxic to Live Cells
3.4. LD-TB Displays High Photostability
3.5. Multicolor Imaging of LD-TB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thiam, A.R.; Jr, R.V.F.; Walther, T.C.; Farese, R.V. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 2013, 14, 775–786. [Google Scholar]
- Murphy, D.J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res. 2001, 40, 325–438. [Google Scholar]
- Farese, R.V., Jr.; Walther, T.C. Lipid droplets finally get a little respect. Cell 2009, 139, 855–860. [Google Scholar]
- Martin, S.; Parton, R.G. Opinion: Lipid droplets: A unified view of a dynamic organelle. Nat. Rev. Mol. Cell Biol. 2006, 7, 373–378. [Google Scholar]
- Murphy, S.; Martin, S.; Parton, R.G. Lipid droplet-organelle interactions; sharing the fats. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2009, 1791, 441–447. [Google Scholar]
- Olzmann, J.A.; Richter, C.M.; Kopito, R.R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. USA 2013, 110, 1345–1350. [Google Scholar]
- Rambold, A.S.; Cohen, S.; Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 2015, 32, 678–692. [Google Scholar]
- Fujimoto, T.; Ohsaki, Y.; Cheng, J.; Suzuki, M.; Shinohara, Y. Lipid droplets: A classic organelle with new outfits. Histochem. Cell Biol. 2008, 130, 263–279. [Google Scholar]
- Boren, J.; Brindle, K. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. 2012, 19, 1561–1571. [Google Scholar]
- Greenberg, A.S.; Coleman, R.A.; Kraemer, F.B.; McManaman, J.L.; Obin, M.S.; Puri, V.; Yan, Q.-W.; Miyoshi, H.; Mashek, U.G. The role of lipid droplets in metabolic disease in rodents and humans. J. Clin. Investig. 2011, 121, 2102–2110. [Google Scholar]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. [Google Scholar]
- Nadler, A.; Schultz, C. The Power of Fluorogenic Probes. Angew. Chem. Int. Ed. 2013, 52, 2408–2410. [Google Scholar]
- Li, X.; Gao, X.; Shi, W.; Ma, H. Design Strategies for Water-Soluble Small Molecular Chromogenic and Fluorogenic Probes. Chem. Rev. 2013, 114, 590–659. [Google Scholar]
- Su, D.; Teoh, C.L.; Wang, L.; Liu, X.; Chang, Y.-T. Motion-induced change in emission (MICE) for developing fluorescent probes. Chem. Soc. Rev. 2017, 46, 4833–4844. [Google Scholar]
- Klymchenko, A.S. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Accounts Chem. Res. 2017, 50, 366–375. [Google Scholar]
- Greenspan, P.; Mayer, E.P.; Fowler, S.D. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985, 100, 965–973. [Google Scholar]
- Listenberger, L.L.; Brown, D.A. Fluorescent Detection of Lipid Droplets and Associated Proteins. Curr. Protoc. Cell Biol. 2007, 35, 24.2.1–24.2.11. [Google Scholar]
- Gao, M.; Su, H.; Li, S.; Lin, Y.; Ling, X.; Qin, A.; Tang, B.Z. An easily accessible aggregation-induced emission probe for lipid droplet-specific imaging and movement tracking. Chem. Commun. 2017, 53, 921–924. [Google Scholar]
- Jiang, M.; Gu, X.; Lam, J.W.Y.; Zhang, Y.; Kwok, R.T.K.; Wong, K.S.; Tang, B.Z. Two-photon AIE bio-probe with large Stokes shift for specific imaging of lipid droplets† †Electronic supplementary information (ESI) available: Experimental section, NMR, mass and absorption, HOMO, LUMO, photophysical properties, cell viability, cell imaging, photostability, and two-photon excited fluorescence spectra of TPA-PI. Chem. Sci. 2017, 8, 5440–5446. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Zhang, T.; Liu, H.; Chen, Y.; Kwok, R.T.K.; Ma, C.; Zhang, P.; Sung, H.H.-Y.; Williams, I.D.; Lam, J.W.Y.; et al. Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano 2018, 12, 8145–8159. [Google Scholar]
- Hu, R.; Chen, B.; Wang, Z.; Qin, A.; Zhao, Z.; Lou, X.; Tang, B.Z. Intriguing “chameleon” fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay. Biomater. 2019, 203, 43–51. [Google Scholar]
- Collot, M.; Fam, T.-K.; AshokKumar, P.; Faklaris, O.; Galli, T.; Danglot, L.; Klymchenko, A.S. Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues. J. Am. Chem. Soc. 2018, 140, 5401–5411. [Google Scholar]
- Sharma, A.; Jha, A.K.; Mishra, S.; Jain, A.; Chauhan, B.S.; Kathuria, M.; Rawat, K.S.; Gupta, N.M.; Tripathi, R.; Mitra, K.; et al. Imaging and Quantitative Detection of Lipid Droplets by Yellow Fluorescent Probes in Liver Sections of Plasmodium Infected Mice and Third Stage Human Cervical Cancer Tissues. Bioconj. Chem. 2018, 29, 3606–3613. [Google Scholar]
- Sharma, A.; Umar, S.; Kar, P.; Singh, K.; Sachdev, M.; Goel, A. A new type of biocompatible fluorescent probe AFN for fixed and live cell imaging of intracellular lipid droplets. Analyst 2016, 141, 137–143. [Google Scholar]
- Collot, M.; Bou, S.; Fam, T.K.; Richert, L.; Mély, Y.; Danglot, L.; Klymchenko, A.S. Probing Polarity and Heterogeneity of Lipid Droplets in Live Cells Using a Push–Pull Fluorophore. Anal. Chem. 2018, 91, 1928–1935. [Google Scholar]
- Ashoka, A.H.; AshokKumar, P.; Kovtun, Y.P.; Klymchenko, A.S. Solvatochromic Near-Infrared Probe for Polarity Mapping of Biomembranes and Lipid Droplets in Cells under Stress. J. Phys. Chem. Lett. 2019, 10, 2414–2421. [Google Scholar]
- Zhai, J.; Zhang, Y.; Yang, C.; Xu, Y.; Qin, Y. A long wavelength hydrophobic probe for intracellular lipid droplets. Analyst 2014, 139, 52–54. [Google Scholar]
- Tang, J.; Zhang, Y.; Yin, H.-Y.; Xu, G.; Zhang, J.-L. Precise Labeling and Tracking of Lipid Droplets in Adipocytes Using a Luminescent ZnSalen Complex. Chem. Asian J. 2017, 12, 2533–2538. [Google Scholar]
- O’Connor, D.; Byrne, A.; Dolan, C.; Keyes, T.E. Phase partitioning, solvent-switchable BODIPY probes for high contrast cellular imaging and FCS. N. J. Chem. 2018, 42, 3671–3682. [Google Scholar]
- Li, G.; Otsuka, Y.; Matsumiya, T.; Suzuki, T.; Li, J.; Takahashi, M.; Yamada, K. A Straightforward Substitution Strategy to Tune BODIPY Dyes Spanning the Near-Infrared Region via Suzuki–Miyaura Cross-Coupling. Materials 2018, 11, 1297. [Google Scholar]
- Yamada, K.; Toyota, T.; Takakura, K.; Ishimaru, M.; Sugawara, T. Preparation of BODIPY probes for multicolor fluorescence imaging studies of membrane dynamics. N. J. Chem. 2001, 25, 667–669. [Google Scholar]
- Ni, Y.; Wu, J. Far-red and near infrared bodipy dyes: Synthesis and applications for fluorescent ph probes and bio-imaging. Org. Biomol. Chem. 2014, 12, 3774–3791. [Google Scholar]
- Landrum, M.; Smertenko, A.; Edwards, R.; Hussey, P.J.; Steel, P.G. BODIPY probes to study peroxisome dynamics in vivo. Plant J. 2010, 62, 529–538. [Google Scholar]
- Zhu, S.; Zhang, J.; Vegesna, G.; Luo, F.-T.; Green, S.A.; Liu, H. Highly water-soluble neutral bodipy dyes with controllable fluorescence quantum yields. Org. Lett. 2010, 13, 438–441. [Google Scholar]
Solvent | λabs /nm | ε /M−1 cm−1 | FWHMabs /nm | λem /nm | FWHMem /nm | Φ | Stokes shift/nm | Brightness (ε × Φ) |
---|---|---|---|---|---|---|---|---|
Cyclohexane | 621 | 83,000 | 50 | 638 | 23 | 0.84 | 17 | 69,720 |
Toluene | 625 | 74,000 | 42 | 644 | 27 | 0.90 | 19 | 66,600 |
Ethyl acetate | 617 | 73,000 | 59 | 638 | 27 | 0.85 | 21 | 62,050 |
Acetone | 617 | 72,000 | 56 | 639 | 27 | 0.85 | 22 | 61,200 |
DMSO | 628 | 69,000 | 44 | 650 | 29 | 0.84 | 22 | 57,960 |
0.5% DMSO/H2O | 630 | 26,000 | 105 | - | - | <0.01 | - | <260 |
Sunflower oil | 626 | 84,000 | 38 | 643 | 26 | 0.85 | 17 | 71,400 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Li, J.; Otsuka, Y.; Zhang, S.; Takahashi, M.; Yamada, K. A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets. Materials 2020, 13, 677. https://doi.org/10.3390/ma13030677
Li G, Li J, Otsuka Y, Zhang S, Takahashi M, Yamada K. A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets. Materials. 2020; 13(3):677. https://doi.org/10.3390/ma13030677
Chicago/Turabian StyleLi, Guanglei, Jianye Li, Yu Otsuka, Shuai Zhang, Masashi Takahashi, and Koji Yamada. 2020. "A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets" Materials 13, no. 3: 677. https://doi.org/10.3390/ma13030677
APA StyleLi, G., Li, J., Otsuka, Y., Zhang, S., Takahashi, M., & Yamada, K. (2020). A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets. Materials, 13(3), 677. https://doi.org/10.3390/ma13030677