The Heat Conductivity Properties of Hemp–Lime Composite Material Used in Single-Family Buildings
Abstract
:1. Introduction
2. Materials and Methods
- Hemp shiv type and particle size fractions.
- Type of binder.
- Mixture component proportions.
- Mixing and material application methods.
- Bulk density.
- Heat transfer coefficient.
- Fire resistance.
- Traditional brick structure: Porotherm, Styrofoam, and wool;
- Natural materials: mainly hemp–lime composite, wattle and daub, and timber.
3. Results
4. Discussion
5. Conclusions and Observations
- Further development of conventional building materials is not critical for the construction industry since nature offers the best choices it is up to us to use them properly
- Knowledge of hemp–lime as a building material is still at the beginning of the process. In spite of the new research undertaken in this area, there are still no unified standards to ensure the appropriate parameters of a given composite
- A great variability of parameters, such as the conductivity, fire, weather, and biological resistance, of the hemp–lime composite is related to so many factors such as morphology of the fillers, the orientation of the filler particles, porosity, the method and the ratio of compaction, the distribution of the filers and many others
- The authors acknowledge the importance of these factors in terms of hemp–lime structure-related issues. This is a very wide range of interdisciplinary research the authors are in the process of preparing samples of the composites for further investigations.
Author Contributions
Funding
Conflicts of Interest
References
- Bedlivá, H.; Isaacs, N. Hempcrete—An environmentally friendly material. Adv. Mater. Res. 2014, 1041, 83–86. [Google Scholar] [CrossRef]
- Radogna, D.; Mastrolonardo, L.; Forlani, M.C. Hemp for a healthy and sustainable building in abruzzo. In Advances in Intelligent Systems and Computing; Springer International Publishing: Milan, Italy, 2018. [Google Scholar]
- Jami, T.; Rawtani, D.; Agrawal, Y.K. Hemp concrete: Carbon-negative construction. Emerg. Mater. Res. 2016, 5, 240–247. [Google Scholar] [CrossRef]
- Maalouf, C.; Ingrao, C.; Scrucca, F.; Moussa, T.; Bourdot, A.; Tricase, C.; Presciutti, A.; Asdrubali, F. An energy and carbon footprint assessment upon the usage of hemp-lime concrete and recycled-PET façades for office facilities in France and Italy. J. Clean. Prod. 2018, 170, 1640–1653. [Google Scholar] [CrossRef]
- Mikulica, K.; Hela, R. Hempcrete—Cement Composite with Natural Fibres. Adv. Mater. Res. 2015, 1124, 130–134. [Google Scholar] [CrossRef]
- Heidari, M.D.; Lawrence, M.; Blanchet, P.; Amor, B. Regionalised Life Cycle Assessment of Bio-Based Materials in Construction; the Case of Hemp Shiv Treated with Sol-Gel Coatings. Materials 2019, 12, 2987. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, C.; Cassady, C.; Ernst, M. Industrial Hemp Production. Center for Crop Diversification, University of Kentucky, September 2015. Available online: https://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/hempproduction.pdf (accessed on 23 February 2020).
- Young, E.M. Revival of Industrial Hemp: A Systematic Analysis of the Current Global Industry to Determine Limitations and Identify Future Potentials within the Concept Of Sustainability. Master’s Thesis, Lund University, Lund, Sweden, 2005. [Google Scholar]
- Allegret, S. The history of hemp. In Hemp: Industrial Production and Uses; CAB International: Surrey, UK, 2013; pp. 4–26. [Google Scholar]
- Gibson, K. Hemp: A Substance of Hope. J. Ind. Hemp. 2006, 10, 75–83. [Google Scholar] [CrossRef]
- Gołębiewski, M. Kompozyty konopno-wapienne (hempcrete). Mater. Bud. 2016, 1, 93–96. [Google Scholar] [CrossRef]
- Elfordy, S.; Lucas, F.; Tancret, F.; Scudeller, Y.; Goudet, L. Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Woolley, T. Building physics, natural materials and policy issues. In Low Impact Building; Wiley: Hoboken, NJ, USA, 2013; pp. 148–186. [Google Scholar]
- Amziane, S.; Arnaud, L.; Challamel, N. Bio-Aggregate-Based Building Materials; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Korjenic, A.; Petránek, V.; Zach, J.; Hroudová, J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy Build. 2011, 43, 2518–2523. [Google Scholar] [CrossRef]
- Amziane, S.; Sonebi, M. Overview on biobased building material made with plant aggregate. RILEM Tech. Lett. 2016, 1, 31–38. [Google Scholar] [CrossRef]
- Prabesh, K. Hempcrete Noise Barrier Wall for Highway Noise Insulation: Research & Construction. Bachelor’s Thesis, Hame University of Applied Sciences, Hämeenlinna, Finland, December 2016. [Google Scholar]
- Piot, A.; Béjat, T.; Jay, A.; Bessette, L.; Wurtz, E.; Barnes-Davin, L. Study of a hempcrete wall exposed to outdoor climate: Effects of the coating. Constr. Build. Mater. 2017, 139, 540–550. [Google Scholar] [CrossRef]
- Arnaud, L.; Gourlay, E. Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Arrigoni, A.; Pelosato, R.; Dotelli, G. Hempcrete from cradle to grave: The role of carbonatation in the material sustainability. In Proceedings of the International Conference on Sustainable Built Environment, Hamburg, Germany, 8–11 March 2016; Available online: https://re.public.polimi.it/retrieve/handle/11311/989311/253111/Arrigoni%20et%20al.%20with%20cover-%20SBE16Hamburg_ConferenceProceedings.pdf (accessed on 23 February 2020).
- Bolcu, D.; Stănescu, M.M. The Influence of Non-Uniformities on the Mechanical Behavior of Hemp-Reinforced Composite Materials with a Dammar Matrix. Materials 2019, 12, 1232. [Google Scholar] [CrossRef] [Green Version]
- Brzyski, P.; Barnat-Hunek, D.; Suchorab, Z.; Łagód, G. Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials 2017, 10, 510. [Google Scholar] [CrossRef]
- Viel, M.; Collet, F.; Pretot, S.; Lanos, C. Hemp-Straw Composites: Gluing Study and Multi-Physical Characterizations. Materials 2019, 12, 1199. [Google Scholar] [CrossRef] [Green Version]
- Ramezanianpour, A.A.; Ghahari, S.A.; Khazaei, A. Feasibility study on production and sustainability of poly propylene fiber reinforced concrete ties based on a value engineering survey. In Proceedings of the Sustainable Construction Materials and Technologies, Kyoto, Japan, 18–21 August 2013. [Google Scholar]
- Ghahari, S.A.; Ramezanianpour, A.M.; Esmaeili, M. An Accelerated Test Method of Simultaneous Carbonation and Chloride Ion Ingress: Durability of Silica Fume Concrete in Severe Environments. Adv. Mater. Sci. Eng. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Picandet, V.; Amziane, S.; Baley, C. Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete. Eur. J. Environ. Civ. Eng. 2009, 13, 1039–1050. [Google Scholar] [CrossRef]
- Pietruszka, B.; Gołȩbiewski, M.; Lisowski, P. Characterization of Hemp-Lime Bio-Composite. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Prague, Czech Republic, 2–4 July 2019. [Google Scholar]
- Bevan, R.; Woolley, T. Constructing a Low Energy House From Hempcrete and Other Natural Materials. In Proceedings of the 11th International Conference on Non-conventional Material Technology (NOCMAT2009), Bath, UK, 6–9 September 2009. [Google Scholar]
- Bevan, R.; Woolley, T. Hemp Lime Construction: A Guide to Building. with Hemp lime Composes; IHS BRE Press: London, UK, 2008. [Google Scholar]
- Brocklebank, I. The lime spectrum. Context 2006, 97, 21–23. Available online: https://www.kalkforum.org/uploads/pdf/artikler/The_Lime_Spectrum_pdf.pdf (accessed on 23 February 2020).
- Colinart, T.; Glouannec, P.; Chauvelon, P. Influence of the setting process and the formulation on the drying of hemp concrete. Constr. Build. Mater. 2012, 30, 372–380. [Google Scholar] [CrossRef]
- Cazacu, C.; Muntean, R.; Gălățanu, T.; Taus, D. Hemp Lime Technology. Bull. Transilv. Univ. Braşov 2016, 9, 19. [Google Scholar]
- Kremensas, A.; KAIRYTĖ, A.; Vaitkus, S.; Vėjelis, S.; Balčiūnas, G. Mechanical Performance of Biodegradable Thermoplastic Polymer-Based Biocomposite Boards from Hemp Shivs and Corn Starch for the Building Industry. Materials 2019, 12, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzyski, P.; Grudzińska, M.; Majerek, D. Analysis of the Occurrence of Thermal Bridges in Several Variants of Connections of the Wall and the Ground Floor in Construction Technology with the Use of a Hemp-lime Composite. Materials 2019, 12, 2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wang, X.; Wang, L. Properties of hemp fibre reinforced concrete composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Kinnane, O.; Reilly, A.; Grimes, J.; Pavia, S.; Walker, R. Acoustic absorption of hemp-lime construction. Constr. Build. Mater. 2016, 122, 674–682. [Google Scholar] [CrossRef] [Green Version]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. [Google Scholar] [CrossRef]
- Bourebrab, M.; Durand, G.G.; Taylor, A. Development of Highly Repellent Silica Particles for Protection of Hemp Shiv Used as Insulation Materials. Materials 2017, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- INTERsoft ArCADia-TERMOCAD PRO 7. Available online: https://www.intersoft.pl/cad/index.php?kup-program-cad=audyt-energetyczny-arcadia-termocad-pro-efektywnosc-energetyczna (accessed on 14 February 2020).
- Gregor, L. Performance of Hempcrete Walls Subjected to a Standard Time-temperature Fire Curve. Master’s Thesis, Victoria University Melbourne, Melbourne, Australia, August 2014. [Google Scholar]
- Daly, P. Hemp lime bio-composite in construction: A study into the performance and application of hemp lime bio-composite as a construction material in Ireland. In Proceedings of the PLEA 2011—Architecture and Sustainable Development, 27th International Conference on Passive and Low Energy Architecture, Louvain-La-Neuve, Belgium, 13–15 July 2011; UCL Presses: Louvain, Belgium, 2011. [Google Scholar]
- Amziane, S.; Arnaud, L.; Challamel, N. Bio-Aggregate-Based Building Materials: Applications to Hemp Concretes; Wiley-ISTE: Hoboken, NJ, USA, 2013; ISBN 9781848214040. [Google Scholar]
- ASTM International New Test Methods for Evaluating the Appropriateness/Applicability of Current R-Value and Fire Resistance Test Methods to Testing the Insulative Properties of Hempcrete Insulation Samples. Available online: https://www.astm.org/DATABASE.CART/WORKITEMS/WK70549.htm (accessed on 14 February 2020).
- Crawford, B.; Pakpour, S.; Kazemian, N.; Klironomos, J.; Stoeffler, K.; Rho, D.; Denault, J.; Milani, A.S. Effect of Fungal Deterioration on Physical and Mechanical Properties of Hemp and Flax Natural Fiber Composites. Materials 2017, 10, 1252. [Google Scholar] [CrossRef] [Green Version]
Binder | Composite 1 | Composite 2 | Composite 3 |
---|---|---|---|
Hydraulic lime | 100% | 10% | - |
Hydrated lime | - | 90% | 70% |
Portland cement | - | - | 30% |
Mixture Used | A (cm) | B (cm) | C (cm) | Volume (m3) |
---|---|---|---|---|
Mixture 1 | 15.26 | 14.90 | 12.53 | 0.002849 |
Mixture 2 | 15.22 | 14.92 | 13.59 | 0.003086 |
Mixture 3 | 15.04 | 14.69 | 13.01 | 0.002874 |
Sample No | Mixture 1 | Mixture 2 | Mixture 3 |
---|---|---|---|
Bulk Density of the Samples Following 28-Day Long Maturation (kg/m3) | |||
1 | 331.28 | 322.64 | 370.06 |
2 | 329.79 | 319.56 | 357.63 |
3 | 357.84 | 338.36 | 339.14 |
4 | 316.40 | 304.26 | 337.23 |
5 | 308.33 | 314.99 | 346.47 |
6 | 352.53 | 354.73 | 348.17 |
Average value | 333.00 | 326.00 | 350.00 |
Sample No | Left Chamber Temperature (K) | Sample Left Wall Temperature (K) | Right Chamber Temperature (K) | Sample Right Wall Temperature (K) | Heat Flux Density (W/m2) | Temperature Gradient (K) | Wall Thickness (m) | λ |
---|---|---|---|---|---|---|---|---|
(W/m*K) | ||||||||
1 | 320.11 | 318.75 | 300.03 | 301.70 | 14.1 | 17.05 | 0.0442 | 0.037 |
2 | 339.00 | 333.86 | 301.07 | 303.02 | 23.4 | 30.84 | 0.0615 | 0.047 |
3 | 340.77 | 332.23 | 302.83 | 307.48 | 32.4 | 24.75 | 0.0343 | 0.045 |
4 | 333.50 | 333.29 | 300.18 | 304.98 | 41.0 | 28.31 | 0.0378 | 0.055 |
5 | 339.05 | 328.17 | 302.67 | 307.28 | 29.1 | 20.89 | 0.0386 | 0.054 |
6 | 331.25 | 326.53 | 304.24 | 307.31 | 21.9 | 19.22 | 0.0346 | 0.039 |
No | External Wall | d (m) | λ (W/m∙K) | R (m2K/W) |
---|---|---|---|---|
External partition | ||||
1 | Clay | 0.015 | 0.850 | 0.018 |
2 | Concentrated hempcrete | 0.400 | 0.046 | 8.696 |
3 | Wattle mat | 0.010 | 0.070 | 0.143 |
4 | Clay | 0.015 | 0.850 | 0.018 |
- | Internal partition | - | - | UC = |
No | Inside Ceiling | d (m) | λ (W/m∙K) | R (m2K/W) |
Inside partition | ||||
1 | Oak fibers lengthwise | 0.030 | 0.400 | 0.075 |
2 | Pine and spruce fibers crosswise | 0.025 | 0.160 | 0.156 |
3 | Concentrated hempcrete | 0.200 | 0.046 | 4.348 |
4 | Pine and spruce fibers crosswise | 0.025 | 0.160 | 0.156 |
- | Outside partition | - | - | UC = |
No | Ground Floor | d (m) | λ (W/m∙K) | R (m2K/W) |
Outside partition | ||||
1 | Granulated blast furnace slag, Keramzyt 700 | 0.300 | 0.200 | 1.500 |
2 | Concentrated hempcrete | 0.150 | 0.046 | 3.261 |
3 | Sand-lime plaster | 0.080 | 0.800 | 0.100 |
4 | Oak fibers lengthwise | 0.025 | 0.400 | 0.063 |
Inside partition | UC = | |||
No | Roof | d (m) | λ (W/m∙K) | R (m2K/W) |
Outside partition | ||||
1 | Wattle slabs | 0.350 | 0.070 | 5.000 |
2 | Pine and spruce fibers crosswise | 0.025 | 0.160 | 0.156 |
3 | Hempcrete | 0.150 | 0.044 | 3.409 |
4 | Pine and spruce fibers crosswise | 0.025 | 0.160 | 0.156 |
5 | Straw slabs | 0.010 | 0.080 | 0.125 |
6 | Clay | 0.030 | 0.850 | 0.035 |
- | Inside partition | - | - | UC = |
Building Energy Characteristics Evaluation | |
---|---|
Energy characteristics indicators | Analyzed building |
Annual usable energy demand | |
Annual final energy demand | |
Annual demand for nonrenewable primary energy | |
CO2 emission unit | ECO2 = 0.01497 |
The percentage share of renewable energy Resources in annual final energy demand | URER = 0% |
Sample No | Sample Mass before the Test (g) | Sample Mass after the Test (g) | Mass Loss after the Test (g) | Mass Loss Percentage (%) |
---|---|---|---|---|
1 | 1582.0 | 1568.4 | 13.6 | 0.9 |
2 | 1541.4 | 1533.8 | 7.6 | 0.5 |
3 | 1598.8 | 1589.4 | 9.4 | 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pochwała, S.; Makiola, D.; Anweiler, S.; Böhm, M. The Heat Conductivity Properties of Hemp–Lime Composite Material Used in Single-Family Buildings. Materials 2020, 13, 1011. https://doi.org/10.3390/ma13041011
Pochwała S, Makiola D, Anweiler S, Böhm M. The Heat Conductivity Properties of Hemp–Lime Composite Material Used in Single-Family Buildings. Materials. 2020; 13(4):1011. https://doi.org/10.3390/ma13041011
Chicago/Turabian StylePochwała, Sławomir, Damian Makiola, Stanisław Anweiler, and Michał Böhm. 2020. "The Heat Conductivity Properties of Hemp–Lime Composite Material Used in Single-Family Buildings" Materials 13, no. 4: 1011. https://doi.org/10.3390/ma13041011
APA StylePochwała, S., Makiola, D., Anweiler, S., & Böhm, M. (2020). The Heat Conductivity Properties of Hemp–Lime Composite Material Used in Single-Family Buildings. Materials, 13(4), 1011. https://doi.org/10.3390/ma13041011