Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials
Abstract
:1. Introduction
2. Theoretical Model
2.1. Surface Impedance of the Perforated Plate with Extended Tubes
2.2. Surface Impedance of Porous Material
2.3. Prediction of the Diffuse-Field Sound-Absorption Properties of Periodic Absorber
3. Oblique-Incidence Sound-Absorption Properties of Periodic Absorber
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maa, D.Y. Theory and design of micro-perforated sound absorbing constructions. Sci. Sin. 1975, 18, 55–71. [Google Scholar]
- Maa, D.Y. Microperforated-panel wideband absorbers. Noise Control. Eng. J. 1987, 29, 77–84. [Google Scholar] [CrossRef]
- Fuchs, H.V.; Zha, X. Acrylic-glass sound absorbes in the Plenum of the Deutscher Bundestag. Appl. Acoust. 1997, 51, 211–217. [Google Scholar] [CrossRef]
- Kang, J.; Fuchs, H.V. Predicting the absorption of open weave textiles and micro-perforated membranes backed by an air space. J. Sound Vib. 1999, 220, 905–920. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Lee, E.W.M.; Ng, C.F. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity. J. Sound Vib. 2005, 287, 227–243. [Google Scholar] [CrossRef]
- Sakagami, K.; Morimoto, M.; Yairi, M. A note on the relationship between the sound absorption by microperforated panels and panel/membrane-type absorbers. Appl. Acoust. 2009, 70, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, M.; Mu, R.L.; Takahashi, D. Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers. Appl. Acoust. 2010, 71, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Sakagami, K.; Morimoto, M.; Koike, W. A numerical study of double-leaf microperforated panel absorbers. Appl. Acoust. 2006, 67, 609–619. [Google Scholar] [CrossRef]
- Sakagami, K.; Nakamori, T.; Morimoto, M.; Yairi, M. Double-leaf microperforated panel space absorbers: A revised theory and analysis. Appl. Acoust. 2009, 70, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Sakagami, K.; Fukutani, Y.; Yairi, M.; Morimoto, M. A theoretical study on the effect of a permeable membrane in the air cavity of a double-leaf microperforated panel space sound absorber. Appl. Acoust. 2014, 79, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Herrin, D.W. Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity. Appl. Acoust. 2010, 17, 120–127. [Google Scholar] [CrossRef]
- Wang, C.; Huang, L. On the acoustic properties of parallel arrangement of multiple micro-perforated panels with different cavity depths. J. Acoust. Soc. Am. 2010, 130, 208–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gai, X.; Xing, T.; Li, X.; Zhang, B.; Wang, F.; Cai, Z.N.; Han, Y. Sound absorption of microperforated panel with L shape division cavity structure. Appl. Acoust. 2017, 122, 41–50. [Google Scholar] [CrossRef]
- Tang, Y.; Li, F.; Xin, F.; Lu, T. Heterogeneously perforated honeycomb-corrugation hybrid sandwich panel as sound absorber. Mater. Des. 2017, 134, 502–512. [Google Scholar] [CrossRef]
- Huang, S.; Li, S.; Wang, X.; Mao, D. Micro-perforated absorbers with incompletely partitioned cavities. Appl. Acoust. 2017, 126, 114–119. [Google Scholar] [CrossRef]
- Pfretzschner, J.; Cobo, P.; Simòn, F.; Cuesta, M.; Fernández, A. Microperforated insertion units: An alternative strategy to design microperforated panels. Appl. Acoust. 2006, 67, 62–73. [Google Scholar] [CrossRef]
- Park, S.H. Acoustic properties of micro-perforated panel absorbers backed by Helmholtz resonators for the improvement of low-frequency sound absorption. J. Sound Vib. 2013, 332, 4895–4911. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, Y.; Wu, Y. Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. Appl. Acoust. 2016, 114, 92–98. [Google Scholar] [CrossRef]
- Gai, X.; Xing, T.; Li, X.; Zhang, B.; Wang, W. Sound absorption of microperforated panel mounted with helmholtz resonators. Appl. Acoust. 2016, 114, 260–265. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, X. Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates. Appl. Acoust. 2015, 88, 123–128. [Google Scholar] [CrossRef]
- Gai, X.; Xing, T.; Li, X.; Zhang, B.; Cai, Z.N.; Wang, F. Sound absorption of microperforated panel with membrane cell and mass blocks composite structure. Appl. Acoust. 2018, 137, 98–107. [Google Scholar] [CrossRef]
- Chang, D.; Liu, B.; Li, X. An electromechanical low frequency panel sound absorber. J. Acoust. Soc. Am. 2010, 128, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Jing, R.; Qiu, X. Sound absorption of a finite micro-perforated panel backed by a shunted loudspeaker. J. Acoust. Soc. Am. 2014, 135, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wang, H.; Li, Z.; Zhu, L.; Chen, R.; Kong, D.; Zhao, Z. Sound absorption of a flexible micro-perforated panel absorber based on PVDF piezoelectric film. Appl. Acoust. 2015, 88, 84–89. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Tian, J.; Wei, W. The perforated panel resonator with flexible tube bundle and its acoustical measurements. In Proceedings of the Inter-Noise 2001, The Hague, The Netherlands, 27–30 August 2001. [Google Scholar]
- Yahya, I.; Harjana, H. Sound absorption improvement strategy for QRD element. In Proceedings of the 20th International Congress on Sound & Vibration 2013, Bangkok, Thailand, 7–11 July 2013. [Google Scholar]
- Li, D.; Chang, D.; Liu, B. Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes. Appl. Acoust. 2016, 102, 126–132. [Google Scholar] [CrossRef]
- Li, D.; Chang, D.; Liu, B. Enhanced low- to mid-frequency sound absorption using parallel-arranged perforated plates with extended tubes and porous material. Appl. Acoust. 2017, 127, 316–323. [Google Scholar] [CrossRef]
- Simon, F. Long Elastic Open Neck Acoustic Resonator for low frequency absorption. J. Sound Vib. 2018, 421, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Simon, F. Long Elastic Open Neck Acoustic Resonator in flow. In Proceedings of the Inter-Noise 2016, Hamburg, German, 21–24 August 2016. [Google Scholar]
- Takahashi, D. A new method for predicting the sound absorption of perforated absorber systems. Appl. Acoust. 1997, 51, 71–84. [Google Scholar] [CrossRef]
- Wang, C.; Huang, L.; Zhang, Y. Oblique incidence sound absorption of parallel arrangement of multiple micro-perforated panel absorbers in a periodic pattern. J. Sound Vib. 2014, 333, 6828–6842. [Google Scholar] [CrossRef] [Green Version]
- Panneton, R.; Olny, X. Acoustical determination of the governing viscous dissipation in porous media. J. Acoust. Soc. Am. 2006, 119, 2027–2040. [Google Scholar] [CrossRef]
- Olny, X.; Panneton, R. Acoustical determination of the governing thermal dissipation in porous media. J. Acoust. Soc. Am. 2008, 123, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Stinson, R.; Daigle, G. Electronic system for the measurement of flow resistance. J. Acoust. Soc. Am. 1988, 83, 2422–2428. [Google Scholar] [CrossRef]
- Iwase, T.; Izumi, Y.; Kawabata, R. A new measuring method for sound propagation by using sound tube without any air spaces. In Proceedings of the Inter-Noise and Noise-Congress and Conference Proceedings, Christchurch, New Zealand, 16–18 November 1998. [Google Scholar]
- Salissou, Y.; Panneton, R. Wideband characterization of the complex wave and characteristic impedance of sound absorbers. J. Acoust. Soc. Am. 2010, 128, 2868–2876. [Google Scholar] [CrossRef]
- Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 1987, 176, 379–402. [Google Scholar] [CrossRef]
- Lafarge, D.; Lemarinier, P.; Allard, J.F.; Tarnow, V. Dynamic compressibility of air in porous structures and audible frequencies. J. Acoust. Soc. Am. 1997, 102, 1995–2006. [Google Scholar] [CrossRef] [Green Version]
- Mechel, F.P. Sound Fields at Periodic Absorbers. J. Sound Vib. 1990, 136, 379–412. [Google Scholar] [CrossRef]
- Drotleff, H.; Wack, R.; Leistner, P. Absorption of periodically aligned absorber strips in concrete structures. Build. Acoust. 2009, 16, 233–256. [Google Scholar] [CrossRef]
- ISO 354:2003, Acoustics-Measurement of Sound Absorption in a Reverberation Room; ISO: Geneva, Switzerland, 2003.
Parameters | σ (N·m−4·s) | ϕ | α_∞ | Λ (μm) | Λ′ (μm) | |
---|---|---|---|---|---|---|
Basotect G+ | 10934 ± 182 | 0.994 | 1.04 ± 0.03 | 92 ± 5 | 197 ± 9 | 27 ± 1 |
Basotect TG | 7800 ± 200 | 0.993 | 1.03 ± 0.02 | 134 ± 16 | 317 ± 32 | 47 ± 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Chang, D.; Liu, B. Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials. Materials 2020, 13, 1091. https://doi.org/10.3390/ma13051091
Li D, Chang D, Liu B. Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials. Materials. 2020; 13(5):1091. https://doi.org/10.3390/ma13051091
Chicago/Turabian StyleLi, Dengke, Daoqing Chang, and Bilong Liu. 2020. "Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials" Materials 13, no. 5: 1091. https://doi.org/10.3390/ma13051091
APA StyleLi, D., Chang, D., & Liu, B. (2020). Diffuse Sound Absorptive Properties of Parallel-Arranged Perforated Plates with Extended Tubes and Porous Materials. Materials, 13(5), 1091. https://doi.org/10.3390/ma13051091