Bio-Inductive Materials in Direct and Indirect Pulp Capping—A Review Article
Abstract
:1. Introduction
2. Vital Pulp Treatment (VPT) in Deep Caries and Management of Pulp Exposures
3. Materials Used in Direct and Indirect Pulp Capping
3.1. Mineral Trioxide Aggregate
Novel Mineral Trioxide Aggregate Restorative Cements
3.2. Biodentine
3.3. TheraCal LC
3.4. ACTIVA BioACTIVE
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schwendicke, F.; Frencken, J.E.; Bjørndal, L.; Maltz, M.; Manton, D.J.; Ricketts, D.; Van Landuyt, K.; Banerjee, A.; Campus, G.; Doméjean, S.; et al. Managing Carious Lesions: Consensus Recommendations on Carious Tissue Removal. Adv. Dent. Res. 2016, 28, 58–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørndal, L.; Simon, S.; Tomson, P.L.; Duncan, H.F. Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 949–973. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Yu, V.S.H.; Lim, K.C.; Tan, B.C.K.; Neo, C.L.J.; Shen, L.; Messer, H.H. Long-term Pulpal and Restorative Outcomes of Pulpotomy in Mature Permanent Teeth. J. Endod. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.M.; Ricucci, D.; Saoud, T.M.; Sigurdsson, A.; Kahler, B. Vital pulp therapy of mature permanent teeth with irreversible pulpitis from the perspective of pulp biology. Aust. Endod. J. 2019. [Google Scholar] [CrossRef] [PubMed]
- Stencel, R.; Kasperski, J.; Pakiela, W.; Mertas, A.; Bobela, E.; Barszczewska-Rybarek, I.; Chladek, G. Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials 2018, 11, 2173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barszczewska-Rybarek, I.; Chladek, G. Studies on the curing efficiency and mechanical properties of bis-GMA and TEGDMA nanocomposites containing silver nanoparticles. Int. J. Mol. Sci. 2018, 19, 3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hench, L.L. Bioceramics. J. Am. Ceram. Soc. 2005, 81, 1705–1728. [Google Scholar] [CrossRef]
- Jefferies, S.R. Bioactive and Biomimetic Restorative Materials: A Comprehensive Review: Part I. J. Esthet. Restor. Dent. 2014, 26, 14–26. [Google Scholar] [CrossRef]
- Cao, C.Y.; Mei, M.L.; Li, Q.L.; Lo, E.C.M.; Chu, C.H. Methods for biomimetic remineralization of human dentine: A systematic review. Int. J. Mol. Sci. 2015, 16, 4615–4627. [Google Scholar] [CrossRef]
- Pameijer, C.H.; Garcia-Godoy, F.; Morrow, B.R.; Jefferies, S.R. Flexural strength and flexural fatigue properties of resin-modified glass ionomers. J. Clin. Dent. 2015, 26, 23–27. [Google Scholar]
- Kim, J.R.; Nosrat, A.; Fouad, A.F. Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J. Dent. 2015, 43, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.A.; Hebling, J.; Hanks, C.T. Current status of pulp capping with dentin adhesive systems: A review. Dent. Mater. 2000, 16, 188–197. [Google Scholar] [CrossRef]
- Duncan, H.F.; Galler, K.M.; Tomson, P.L.; Simon, S.; El-Karim, I.; Kundzina, R.; Krastl, G.; Dammaschke, T.; Fransson, H.; Markvart, M.; et al. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. Int. Endod. J. 2019, 52, 923–934. [Google Scholar] [PubMed] [Green Version]
- Tüzüner, T.; Alacam, A.; Altunbas, D.A.; Gokdogan, F.G.; Gundogdu, E. Clinical and radiographic outcomes of direct pulp capping therapy in primary molar teeth following haemostasis with various antiseptics: A randomised controlled trial. Eur. J. Paediatr. Dent. 2012, 13, 289–292. [Google Scholar]
- Thanatvarakorn, O.; Nakajima, M.; Prasansuttiporn, T.; Ichinose, S.; Foxton, R.M.; Tagami, J. Effect of smear layer deproteinizing on resin-dentine interface with self-etch adhesive. J. Dent. 2014, 42, 298–304. [Google Scholar] [CrossRef]
- Abuhaimed, T.S.; Neel, E.A.A. Sodium Hypochlorite Irrigation and Its Effect on Bond Strength to Dentin. Biomed. Res. Int. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mente, J.; Geletneky, B.; Ohle, M.; Koch, M.J.; Friedrich Ding, P.G.; Wolff, D.; Dreyhaupt, J.; Martin, N.; Staehle, H.J.; Pfefferle, T. Mineral Trioxide Aggregate or Calcium Hydroxide Direct Pulp Capping: An Analysis of the Clinical Treatment Outcome. J. Endod. 2010, 36, 806–813. [Google Scholar] [CrossRef]
- Lapinska, B.; Klimek, L.; Sokolowski, J.; Lukomska-Szymanska, M. Dentine surface morphology after chlorhexidine application-SEM study. Polymers 2018, 10, 905. [Google Scholar] [CrossRef] [Green Version]
- Chailertvanitkul, P.; Paphangkorakit, J.; Sooksantisakoonchai, N.; Pumas, N.; Pairojamornyoot, W.; Leela-apiradee, N.; Abbott, P.V. Randomized control trial comparing calcium hydroxide and mineral trioxide aggregate for partial pulpotomies in cariously exposed pulps of permanent molars. Int. Endod. J. 2014, 47, 835–842. [Google Scholar] [CrossRef]
- Fava, L.R.G.; Saunders, W.P. Calcium hydroxide pastes: Classification and clinical indications. Int. Endod. J. 1999, 32, 257–282. [Google Scholar] [CrossRef] [Green Version]
- Cox, C.F.; Sübay, R.K.; Ostro, E.; Suzuki, S.; Suzuki, S.H. Tunnel defects in dentin bridges: Their formation following direct pulp capping. Oper. Dent. 1996, 21, 4–11. [Google Scholar] [PubMed]
- Hilton, T.J. Keys to Clinical Success with Pulp Capping: A Review of the Literature. Oper. Dent. 2009, 34, 615–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komabayashi, T.; Zhu, Q.; Eberhart, R.; Imai, Y. Current status of direct pulp-capping materials for permanent teeth. Dent. Mater. J. 2016, 35, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, S.; Smith, A.J.; Lumley, P.J.; Cooper, P.R.; Berdal, A. The pulp healing process: From generation to regeneration. Endod. Top. 2012, 26, 41–56. [Google Scholar] [CrossRef]
- Hargreaves, K.M.; Goodis, H.E.; Seltzer, S. Seltzer and Bender’s Dental Pulp; Quintessence Pub. Co.: Chicago, IL, USA, 2002; ISBN 9780867154153. [Google Scholar]
- Gandolfi, M.G.; Siboni, F.; Botero, T.; Bossù, M.; Riccitiello, F.; Prati, C. Calcium silicate and calcium hydroxide materials for pulp capping: Biointeractivity, porosity, solubility and bioactivity of current formulations. J. Appl. Biomater. Funct. Mater. 2015, 13, 41–60. [Google Scholar] [CrossRef]
- Mickenautsch, S.; Yengopal, V.; Banerjee, A. Pulp response to resin-modified glass ionomer and calcium hydroxide cements in deep cavities: A quantitative systematic review. Dent. Mater. 2010, 26, 761–770. [Google Scholar] [CrossRef]
- Torabinejad, M.; Watson, T.F.; Pitt Ford, T.R. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod. 1993, 19, 591–595. [Google Scholar] [CrossRef]
- Torabinejad, M.; Hong, C.; McDonald, F.; Pitt Ford, T. Physical and chemical properties of a new root-end filling material. J. Endod. 1995, 21, 349–353. [Google Scholar] [CrossRef]
- Zhu, C.; Ju, B.; Ni, R. Clinical outcome of direct pulp capping with MTA or calcium hydroxide: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 17055–17060. [Google Scholar]
- Hilton, T.J.; Ferracane, J.L.; Mancl, L. Comparison of CaOH with MTA for Direct Pulp Capping: A PBRN Randomized Clinical Trial. J. Dent. Res. 2013, 92, S16–S22. [Google Scholar] [CrossRef] [Green Version]
- Baroudi, K.; Samir, S. Sealing Ability of MTA Used in Perforation Repair of Permanent Teeth; Literature Review. Open Dent. J. 2016, 10, 278–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mc Cabe, P.S. The clinical applications of mineral trioxide aggregate. J. Ir. Dent. Assoc. 2003, 49, 123–131. [Google Scholar] [PubMed]
- Muhamad, A.; Azzaldeen, A.; Hanali, A. Mineral Trioxide Aggregate (MTA) in apexification. Endodontology 2013, 25, 97–101. [Google Scholar]
- Vijayran, M.; Chaudhary, S.; Manuja, N.; Kulkarni, A.U. Mineral trioxide aggregate (MTA) apexification: A novel approach for traumatised young immature permanent teeth. BMJ Case Rep. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camilleri, J. The chemical composition of mineral trioxide aggregate. J. Conserv. Dent. 2008, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Kaup, M.; Schäfer, E.; Dammaschke, T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Vivan, R.R.; Zapata, R.O.; Zeferino, M.A.; Bramante, C.M.; Bernardineli, N.; Garcia, R.B.; Hungaro Duarte, M.A.; Tanomaru Filho, M.; Gomes De Moraes, I. Evaluation of the physical and chemical properties of two commercial and three experimental root-end filling materials. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 110, 250–256. [Google Scholar] [CrossRef]
- Pornamazeh, T.; Yadegari, Z.; Ghasemi, A.; Sheykh-al-Eslamian, S.M.; Shojaeian, S.H. In Vitro cytotoxicity and setting time assessment of calcium-enriched mixture cement, retro mineral trioxide aggregate and mineral trioxide aggregate. Iran. Endod. J. 2017, 12, 488–492. [Google Scholar]
- Choi, Y.; Park, S.J.; Lee, S.H.; Hwang, Y.C.; Yu, M.K.; Min, K.S. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J. Endod. 2013, 39, 467–472. [Google Scholar] [CrossRef]
- Tanomaru-Filho, M.; Morales, V.; da Silva, G.F.; Bosso, R.; Reis, J.M.S.N.; Duarte, M.A.H.; Guerreiro-Tanomaru, J.M. Compressive Strength and Setting Time of MTA and Portland Cement Associated with Different Radiopacifying Agents. ISRN Dent. 2012, 2012, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Bortoluzzi, E.A.; Broon, N.J.; Bramante, C.M.; Felippe, W.T.; Tanomaru Filho, M.; Esberard, R.M. The Influence of Calcium Chloride on the Setting Time, Solubility, Disintegration, and pH of Mineral Trioxide Aggregate and White Portland Cement with a Radiopacifier. J. Endod. 2009, 35, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Grech, L.; Mallia, B.; Camilleri, J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent. Mater. 2013, 29, e20–e28. [Google Scholar] [CrossRef] [PubMed]
- Ha, W.N.; Nicholson, T.; Kahler, B.; Walsh, L.J. Mineral trioxide aggregate-A review of properties and testing methodologies. Materials 2017, 10, 1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, L.C.; Yadlapati, M.; Dorn, S.O.; Silva, R.; Letra, A. Analysis of radiopacity, pH and cytotoxicity of a new bioceramic material. J. Appl. Oral Sci. 2015, 23, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Galarça, A.D.; Da Rosa, W.L.D.O.; Da Silva, T.M.; Da Silveira Lima, G.; Carreño, N.L.V.; Pereira, T.M.; Aguirre Guedes, O.; Borges, A.H.; Da Silva, A.F.; Piva, E. Physical and Biological Properties of a High-Plasticity Tricalcium Silicate Cement. Biomed. Res. Int. 2018, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Corral, C.; Negrete, P.; Estay, J.; Osorio, S.; Covarrubias, C.; De Oliveira Junior, O.B.; Barud, H. Radiopacity and Chemical Assessment of New Commercial Calcium Silicate-Based Cements. Int. J. Odontostomatol. 2018, 12, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Che, J.-L.; Kim, J.-H.; Kim, S.-M.; Choi, N.; Moon, H.-J.; Hwang, M.-J.; Song, H.-J.; Park, Y.-J. Comparison of Setting Time, Compressive Strength, Solubility, and pH of Four Kinds of MTA. Korean J. Dent. Mater. 2016, 43, 61–72. [Google Scholar] [CrossRef]
- Kaup, M.; Dammann, C.H.; Schäfer, E.; Dammaschke, T. Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo. Head Face Med. 2015, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Jantarat, J.; Ritsayam, S.; Banomyong, D.; Chaimanakarn, C. Early and 24-hour shear bond strength to dentine of three calcium silicate based pulp capping materials. Mah. Dent. J. 2018, 38, 177–183. [Google Scholar]
- Hong, K. Kwon Dentin Bonding of TheraCal LC Calcium Silicate Containing an Acidic Monomer: An In Vitro Study. Materials 2020, 13, 293. [Google Scholar]
- Benetti, A.R.; Michou, S.; Larsen, L.; Peutzfeldt, A.; Pallesen, U.; van Dijken, J.W.V. Adhesion and marginal adaptation of a claimed bioactive, restorative material. Biomater. Investig. Dent. 2019, 6, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Cantekin, K.; Avci, S. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®). J. Appl. Oral Sci. 2014, 22, 302–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagi, S.M.; Omar, N.; Salem, H.N.; Aly, Y. Effect of different surface treatment protocols on the shear bond strength of perforation repair materials to resin composite. J. Adhes. Sci. Technol. 2020, 34, 417–426. [Google Scholar] [CrossRef]
- Shin, H.; Kim, M.; Nam, O.; Lee, H.; Choi, S.; Kim, K. Shear Bond Strength Comparison of Different Adhesive Systems to Calcium Silicate-based Materials. J. Korean Acad. Pediatr. Dent. 2018, 45, 445–454. [Google Scholar] [CrossRef]
- Cantekin, K. Bond strength of different restorative materials to light-curable mineral trioxide aggregate. J. Clin. Pediatr. Dent. 2015, 39, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Daniele, L. Mineral Trioxide Aggregate (MTA) direct pulp capping: 10 years clinical results. G. Ital. Endod. 2017, 31, 48–57. [Google Scholar] [CrossRef]
- Bogen, G.; Kim, J.S.; Bakland, L.K. Direct pulp capping with mineral trioxide aggregate: An observational study. J. Am. Dent. Assoc. 2008, 139, 305–315. [Google Scholar] [CrossRef]
- Sarkar, N.; Caicedo, R.; Ritwik, P. Physicochemical Basis of the Biologic Properties of Mineral Trioxide Aggregate. J. Endod. 2005, 31, 97–100. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral Trioxide Aggregate: A Comprehensive Literature Review—Part III: Clinical Applications, Drawbacks, and Mechanism of Action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef]
- Antunes Bortoluzzi, E.; Sivieri Araújo, G.; Maria Guerreiro Tanomaru, J.; Tanomaru-Filho, M. Marginal Gingiva Discoloration by Gray MTA: A Case Report. J. Endod. 2007, 33, 325–327. [Google Scholar] [CrossRef]
- Asgary, S.; Parirokh, M.; Eghbal, M.; Brink, F. Chemical Differences between White and Gray Mineral Trioxide Aggregate. J. Endod. 2005, 31, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Felman, D.; Parashos, P. Coronal tooth discoloration and white mineral trioxide aggregate. J. Endod. 2013, 39, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Islam, I.; Kheng Chng, H.; Jin Yap, A.U. Comparison of the physical and mechanical properties of MTA and portland cement. J. Endod. 2006, 32, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Salem-Milani, A.; Ghasemi, S.; Rahimi, S.; Ardalan-Abdollahi, A.; Asghari-Jafarabadi, M. The Discoloration effect of White Mineral Trioxide Aggregate (WMTA), Calcium Enriched Mixture (CEM), and Portland Cement (PC) on Human Teeth. J. Clin. Exp. Dent. 2017, 9, e1397–e1401. [Google Scholar] [CrossRef]
- Schembri, M.; Peplow, G.; Camilleri, J. Analyses of heavy metals in mineral trioxide aggregate and Portland cement. J. Endod. 2010, 36, 1210–1215. [Google Scholar] [CrossRef]
- Mente, J.; Hufnagel, S.; Leo, M.; Michel, A.; Gehrig, H.; Panagidis, D.; Saure, D.; Pfefferle, T. Treatment Outcome of Mineral Trioxide Aggregate or Calcium Hydroxide Direct Pulp Capping: Long-term Results. J. Endod. 2014, 40, 1746–1751. [Google Scholar] [CrossRef]
- Laurent, P.; Camps, J.; About, I. BiodentineTM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int. Endod. J. 2012, 45, 439–448. [Google Scholar] [CrossRef]
- Dammaschke, T.; Nowicka, A.; Lipski, M.; Ricucci, D. Histological evaluation of hard tissue formation after direct pulp capping with a fast-setting mineral trioxide aggregate (RetroMTA) in humans. Clin. Oral Investig. 2019, 23, 4289–4299. [Google Scholar] [CrossRef]
- Paula, A.; Laranjo, M.; Marto, C.M.; Abrantes, A.M.; Casalta-Lopes, J.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Ferreira, M.M.; Botelho, M.F.; Carrilho, E. BiodentineTM Boosts, WhiteProRoot® MTA Increases and Life® Suppresses Odontoblast Activity. Materials 2019, 12, 1184. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Song, Y.-S.; Min, K.-S.; Kim, S.-H.; Koh, J.-T.; Lee, B.-N.; Chang, H.-S.; Hwang, I.-N.; Oh, W.-M.; Hwang, Y.-C. Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry. Restor. Dent. Endod. 2016, 41, 29. [Google Scholar] [CrossRef] [Green Version]
- Moussa, S.A. Mineral Trioxide Aggregate (MTA) vs. Calcium Hydroxide in Direct Pulp Capping—Literature Review. Online J. Dent. Oral Heal. 2018, 1, 1–6. [Google Scholar] [CrossRef]
- Poggio, C.; Lombardini, M.; Colombo, M.; Beltrami, R.; Rindi, S. Solubility and pH of direct pulp capping materials: A comparative study. J. Appl. Biomater. Funct. Mater. 2015, 13, e181–e185. [Google Scholar] [CrossRef] [PubMed]
- Akhavan Zanjani, V.; Tabari, K.; Sheikh-Al-Eslamian, S.M.; Abrandabadi, A.N. Physiochemical properties of experimental nano-hybrid MTA. J. Med. Life 2017, 10, 182–187. [Google Scholar] [PubMed]
- Zeid, S.T.H.A.; Alothmani, O.S.; Yousef, M.K. Biodentine and Mineral Trioxide Aggregate: An Analysis of Solubility, pH Changes and Leaching Elements. Life Sci. J. 2015, 12, 18–23. [Google Scholar]
- Yelamali, S.; Patil, A.C. Evaluation of shear bond strength of a composite resin to white mineral trioxide aggregate with three different bonding systems-An in vitro analysis. J. Clin. Exp. Dent. 2016, 8, e273–e277. [Google Scholar] [PubMed]
- Tyagi, N.; Chaman, C.; Tyagi, S.P.; Singh, U.P.; Sharma, A. The shear bond strength of MTA with three different types of adhesive systems: An in vitro study. J. Conserv. Dent. 2016, 19, 130–133. [Google Scholar] [PubMed] [Green Version]
- Sulwińska, M.; Szczesio, A.; Bołtacz-Rzepkowska, E. Bond strength of a resin composite to MTA at various time intervals and with different adhesive strategies. Dent. Med. Probl. 2017, 54, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Krawczyk-Stuss, M.; Nowak, J.; Bołtacz-Rzepkowska, E. Bond strength of Biodentine to a resin-based composite at various acid etching times and with different adhesive strategies. Dent. Med. Probl. 2019, 56, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Odabaş, M.E.; Bani, M.; Tirali, R.E. Shear Bond Strengths of Different Adhesive Systems to Biodentine. Sci. World J. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Karadas, M.; Cantekin, K.; Gumus, H.; Ateş, S.M.; Duymuş, Z.Y. Evaluation of the bond strength of different adhesive agents to a resin-modified calcium silicate material (TheraCal LC). Scanning 2016, 38, 403–411. [Google Scholar] [CrossRef]
- Samimi, P.; Kazemian, M.; Shirban, F.; Alaei, S.; Khoroushi, M. Bond strength of composite resin to white mineral trioxide aggregate: Effect of different surface treatments. J. Conserv. Dent. 2018, 21, 350. [Google Scholar] [PubMed]
- Guo, Y.J.; Du, T.F.; Li, H.B.; Shen, Y.; Mobuchon, C.; Hieawy, A.; Wang, Z.J.; Yang, Y.; Ma, J.; Haapasalo, M. Physical properties and hydration behavior of a fast-setting bioceramic endodontic material. BMC Oral Health 2016, 16, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nekoofar, M.H.; Aseeley, Z.; Dummer, P.M.H. The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. Int. Endod. J. 2010, 43, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Chedella, S.C.V.; Berzins, D.W. A differential scanning calorimetry study of the setting reaction of MTA. Int. Endod. J. 2010, 43, 509–518. [Google Scholar] [CrossRef]
- Ha, H.-T. The effect of the maturation time of calcium silicate-based cement (BiodentineTM) on resin bonding: An in vitro study. Appl. Adhes. Sci. 2019, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Hashem, D.F.; Foxton, R.; Manoharan, A.; Watson, T.F.; Banerjee, A. The physical characteristics of resin composite–calcium silicate interface as part of a layered/laminate adhesive restoration. Dent. Mater. 2014, 30, 343–349. [Google Scholar] [CrossRef]
- Sultana, N.; Nawal, R.; Chaudhry, S.; Sivakumar, M.; Talwar, S. Effect of acid etching on the micro-shear bond strength of resin composite–calcium silicate interface evaluated over different time intervals of bond aging. J. Conserv. Dent. 2018, 21, 194–197. [Google Scholar]
- Siboni, F.; Taddei, P.; Prati, C.; Gandolfi, M.G. Properties of NeoMTA plus and MTA plus cements for endodontics. Int. Endod. J. 2017, 50, e83–e94. [Google Scholar] [CrossRef] [Green Version]
- Zeid, S.T.A.; Alamoudi, N.M.; Khafagi, M.G.; Abou Neel, E.A. Chemistry and Bioactivity of NeoMTA PlusTM versus MTA Angelus® Root Repair Materials. J. Spectrosc. 2017, 2017, 8736428. [Google Scholar]
- Tom As-Catal, C.J.; Collado-Gonz Alez, M.; García-Bernal, D.; Oñate-Sánchez, R.E.; Forner, L.; Llena, C.; an Lozano, A.; Moraleda, J.M.; Rodr ıguez-Lozano, F.J. Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells. J. Endod. 2018, 44, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Camilleri, J. Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy Procedures. J. Endod. 2015, 41, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Mahgoub, N.; Alqadasi, B.; Aldhorae, K.; Assiry, A.; Altawili, Z.; Hong, T. Comparison between iRoot BP Plus (EndoSequence Root Repair Material) and Mineral Trioxide Aggregate as Pulp-capping Agents: A Systematic Review. J. Int. Soc. Prev. Community Dent. 2019, 9, 542–552. [Google Scholar] [PubMed]
- Rao, Q.; Kuang, J.; Mao, C.; Dai, J.; Hu, L.; Lei, Z.; Song, G.; Yuan, G. Comparison of iRoot BP Plus and Calcium Hydroxide as Pulpotomy Materials in Permanent Incisors with Complicated Crown Fractures: A Retrospective Study. J. Endod. 2020. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, T.S.; Silva, G.F.; Jm, G.; In, C.P.S. In Vivo evaluation of the inflammatory response and IL-6 immunoexpression promoted by Biodentine and MTA Angelus. Int. Endod. J. 2015, 49, 1–9. [Google Scholar]
- Septodont Biodentine Active Biosilicate Technology Scientific File. In Vitro 2010. Available online: http://www.oraverse.com/bio/img/Biodentine-ScientificFile.pdf (accessed on 20 December 2019).
- Rajasekharan, S.; Martens, L.C.; Cauwels, R.G.E.C.; Verbeeck, R.M.H. BiodentineTM material characteristics and clinical applications: A review of the literature. Eur. Arch. Paediatr. Dent. 2014, 15, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Tanalp, J.; Karapınar-Kazandağ, M.; Dölekoğlu, S.; Kayahan, M.B. Comparison of the radiopacities of different root-end filling and repair materials. Sci. World J. 2013, 2013, 594950. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, M.K.; Oz, F.T.; Orhan, K. Evaluation of calcium (Ca2+) and hydroxide (OH−) ion diffusion rates of indirect pulp capping materials. Int. J. Artif. Organs 2017, 40, 641–646. [Google Scholar] [CrossRef]
- About, I. Biodentine: From biochemical and bioactive properties to clinical applications. G. Ital. Endod. 2016, 30, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.A.; Khademi, A.; Soltani, P.; Shahnaseri, S.; Poorghorban, M. Comparison of sealing ability of ProRoot mineral trioxide aggregate, biodentine, and ortho mineral trioxide aggregate for canal obturation by the fluid infiltration technique. Dent. Res. J. 2018, 15, 307–312. [Google Scholar]
- Sinkar, R.; Patil, S.; Jogad, N.; Gade, V. Comparison of sealing ability of ProRoot MTA, RetroMTA, and Biodentine as furcation repair materials: An ultraviolet spectrophotometric analysis. J. Conserv. Dent. 2015, 18, 445. [Google Scholar] [CrossRef]
- Nifla, F.; Suvarna, N.; KShetty, H.; MoosaKutty, S. Sealing ability of MTA Angelus, Biodentine, Geristore-an ultraviolet spectrophotometric analysis. Int. J. Adv. Res. 2019, 7, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Hegde, S.; Sowmya, B.; Mathew, S.; Bhandi, S.H.; Nagaraja, S.; Dinesh, K. Clinical evaluation of mineral trioxide aggregate and biodentine as direct pulp capping agents in carious teeth. J. Conserv. Dent. 2017, 20, 91–95. [Google Scholar] [PubMed]
- Awawdeh, L.; Al-Qudah, A.; Hamouri, H.; Chakra, R.J. Outcomes of Vital Pulp Therapy Using Mineral Trioxide Aggregate or Biodentine: A Prospective Randomized Clinical Trial. J. Endod. 2018, 44, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Brizuela, C.; Ormeño, A.; Cabrera, C.; Cabezas, R.; Silva, C.I.; Ramírez, V.; Mercade, M. Direct Pulp Capping with Calcium Hydroxide, Mineral Trioxide Aggregate, and Biodentine in Permanent Young Teeth with Caries: A Randomized Clinical Trial. J. Endod. 2017, 43, 1776–1780. [Google Scholar] [CrossRef]
- Katge, F.A.; Patil, D.P. Comparative Analysis of 2 Calcium Silicate—Based Cements (Biodentine and Mineral Trioxide Aggregate) as Direct Pulp-capping Agent in Young Permanent Molars: A Split Mouth Study. J. Endod. 2017, 43, 507–513. [Google Scholar] [CrossRef]
- Nowicka, A.; Lipski, M.; Parafiniuk, M.; Sporniak-Tutak, K.; Lichota, D.; Kosierkiewicz, A.; Kaczmarek, W.; Buczkowska-Radlińska, J. Response of human dental pulp capped with biodentine and mineral trioxide aggregate. J. Endod. 2013, 39, 743–747. [Google Scholar] [CrossRef]
- Lipski, M.; Nowicka, A.; Kot, K.; Postek-Stefańska, L.; Wysoczańska-Jankowicz, I.; Borkowski, L.; Andersz, P.; Jarząbek, A.; Grocholewicz, K.; Sobolewska, E.; et al. Factors affecting the outcomes of direct pulp capping using Biodentine. Clin. Oral Investig. 2018, 22, 2021–2029. [Google Scholar] [CrossRef] [Green Version]
- About, I. Dentin-pulp regeneration: The primordial role of the microenvironment and its modification by traumatic injuries and bioactive materials. Endod. Top. 2013, 28, 61–89. [Google Scholar] [CrossRef]
- Zanini, M.; Sautier, J.M.; Berdal, A.; Simon, S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J. Endod. 2012, 38, 1220–1226. [Google Scholar] [CrossRef]
- Mahmoud, S.; El-Negoly, S.; Zaen El-Din, A.; El-Zekrid, M.; Grawish, L.; Grawish, H.; Grawish, M. Biodentine versus mineral trioxide aggregate as a direct pulp capping material for human mature permanent teeth—A systematic review. J. Conserv. Dent. 2018, 21, 466. [Google Scholar]
- Tran, X.V.; Gorin, C.; Willig, C.; Baroukh, B.; Pellat, B.; Decup, F.; Opsahl Vital, S.; Chaussain, C.; Boukpessi, T. Effect of a calcium-silicate-based restorative cement on pulp repair. J. Dent. Res. 2012, 91, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiar, H.; Nekoofar, M.H.; Aminishakib, P.; Abedi, F.; Naghi Moosavi, F.; Esnaashari, E.; Azizi, A.; Esmailian, S.; Ellini, M.R.; Mesgarzadeh, V.; et al. Human Pulp Responses to Partial Pulpotomy Treatment with TheraCal as Compared with Biodentine and ProRoot MTA: A Clinical Trial. J. Endod. 2017, 43, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, H.; Dhillon, J.S.; Batra, M.; Saini, M. MTA versus Biodentine: Review of Literature with a Comparative Analysis. J. Clin. Diagn. Res. 2017, 11, ZG01–ZG05. [Google Scholar] [CrossRef] [PubMed]
- Tulumbaci, F.; Almaz, M.E.; Arikan, V.; Mutluay, M.S. Shear bond strength of different restorative materials to mineral trioxide aggregate and Biodentine. J. Conserv. Dent. 2017, 20, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Siboni, F.; Prati, C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int. Endod. J. 2012, 45, 571–579. [Google Scholar] [CrossRef]
- Camilleri, J.; Laurent, P.; About, I. Hydration of Biodentine, Theracal LC, and a Prototype Tricalcium Silicate–based Dentin Replacement Material after Pulp Capping in Entire Tooth Cultures. J. Endod. 2014, 40, 1846–1854. [Google Scholar] [CrossRef]
- Fathy, S. Remineralization ability of two hydraulic calcium-silicate based dental pulp capping materials: Cell-independent model. J. Clin. Exp. Dent. 2019, 11, e360–e366. [Google Scholar] [CrossRef]
- Camilleri, J. Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent. Mater. 2014, 30, 709–715. [Google Scholar] [CrossRef]
- Li, X.; De Munck, J.; Van Landuyt, K.; Pedano, M.; Chen, Z.; Van Meerbeek, B. How effectively do hydraulic calcium-silicate cements re-mineralize demineralized dentin. Dent. Mater. 2017, 33, 434–445. [Google Scholar] [CrossRef]
- Makkar, S.; Kaur, H.; Aggarwal, A.; Vashish, R. A confocal laser scanning microscopic study evaluating the sealing ability of mineral trioxide aggregate, Biodentine and new pulp capping agent—TheraCal. Dent. J. Adv. Stud. 2015, 3, 20–25. [Google Scholar]
- Lee, H.; Shin, Y.; Kim, S.-O.; Lee, H.-S.; Choi, H.-J.; Song, J.S. Comparative Study of Pulpal Responses to Pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in Dogs’ Teeth. J. Endod. 2015, 41, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, B.W.; Jensen, E.; Örtengren, U.; Michelsen, V.B. Analysis of organic components in resin-modified pulp capping materials: Critical considerations. Eur. J. Oral Sci. 2017, 125, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Jeanneau, C.; Laurent, P.; Rombouts, C.; Giraud, T.; About, I. Light-cured Tricalcium Silicate Toxicity to the Dental Pulp. J. Endod. 2017, 43, 2074–2080. [Google Scholar] [CrossRef] [PubMed]
- Kamal, E.; Nabih, S.; Obeid, R.; Abdelhameed, M. The reparative capacity of different bioactive dental materials for direct pulp capping. Dent. Med. Probl. 2018, 55, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savas, S.; Botsali, M.S.; Kucukyilmaz, E.; Sari, T. Evaluation of temperature changes in the pulp chamber during polymerization of light-cured pulp-capping materials by using a VALO LED light curing unit at different curing distances. Dent. Mater. J. 2014, 33, 764–769. [Google Scholar] [CrossRef]
- Meraji, N.; Camilleri, J. Bonding over Dentin Replacement Materials. J. Endod. 2017, 43, 1343–1349. [Google Scholar] [CrossRef]
- Deepa, V.; Dhamaraju, B.; Bollu, I.; Balaji, T. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study. J. Conserv. Dent. 2016, 19, 166. [Google Scholar] [CrossRef]
- Porenczuk, A.; Jankiewicz, B.; Naurecka, M.; Bartosewicz, B.; Sierakowski, B.; Gozdowski, D.; Kostecki, J.; Nasiłowska, B.; Mielczarek, A. A comparison of the remineralizing potential of dental restorative materials by analyzing their fluoride release profiles. Adv. Clin. Exp. Med. 2019, 28, 815–823. [Google Scholar] [CrossRef] [Green Version]
- May, E.; Donly, K.J. Fluoride release and re-release from a bioactive restorative material. Am. J. Dent. 2017, 30, 305–308. [Google Scholar]
- Pulpdent Activa BioActive White Paper. Available online: https://secureservercdn.net/198.71.233.195/91d.e9f.myftpupload.com/wp-content/uploads/2019/12/XF-VWP8-REV10.19.pdf (accessed on 20 December 2019).
- Jun, S.-K.; Lee, J.-H.; Lee, H.-H. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells. Biomed. Res. Int. 2017, 2017, 2495282. [Google Scholar] [CrossRef] [Green Version]
- Van Dijken, J.W.V.; Pallesen, U.; Benetti, A. A randomized controlled evaluation of posterior resin restorations of an altered resin modified glass-ionomer cement with claimed bioactivity. Dent. Mater. 2019, 35, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, M.; Yadav, M. Marginal microleakage properties of Activa BioActive Restorative and nanohybrid composite resin using two different adhesives in non carious cervical lesions—An In Vitro study. J. West. Afr. Coll. Surg. 2017, 7, 1–14. [Google Scholar] [PubMed]
- Omidi, B.R.; Naeini, F.F.; Dehghan, H.; Tamiz, P.; Savadroodbari, M.M.; Jabbarian, R. Microleakage of an Enhanced Resin-Modified Glass Ionomer Restorative Material in Primary Molars. J. Dent. 2018, 15, 205–213. [Google Scholar]
- Giraud, T.; Jeanneau, C.; Bergmann, M.; Laurent, P.; About, I. Tricalcium Silicate Capping Materials Modulate Pulp Healing and Inflammatory Activity In Vitro. J. Endod. 2018, 44, 1686–1691. [Google Scholar] [CrossRef] [Green Version]
- Giraud, T.; Jeanneau, C.; Rombouts, C.; Bakhtiar, H.; Laurent, P.; About, I. Pulp capping materials modulate the balance between inflammation and regeneration. Dent. Mater. 2019, 35, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Abou ElReash, A.; Hamama, H.; Abdo, W.; Wu, Q.; Zaen El-Din, A.; Xiaoli, X. Biocompatibility of new bioactive resin composite versus calcium silicate cements: An animal study. BMC Oral Health 2019, 19, 194. [Google Scholar] [CrossRef] [Green Version]
- Nowicka, A.; Wilk, G.; Lipski, M.; Kołecki, J.; Buczkowska-Radlińska, J. Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth. J. Endod. 2015, 41, 1234–1240. [Google Scholar] [CrossRef]
Property | Material | |||||
---|---|---|---|---|---|---|
MTA | Biodentine | TheraCal LC | ACTIVA BioACTIVE BASE/LINER | |||
ProRoot MTA | MTA Angelus | RetroMTA | ||||
Release Date | 1999 | 2001 | 2014 | 2011 | 2011 | 2014 |
Composition | Powder: tricalcium silicate, icalcium silicate, tricalcium aluminate, bismuth oxide, gypsum Liquid: water | Powder: tricalcium silicate, dicalcium silicate, tricalcium aluminate, silicon oxide, potassium oxide, aluminum oxide, sodium oxide, iron oxide, calcium oxide, bismuth oxide, magnesium oxide, insoluble residues of crystalline silica Liquid: water | Powder: calcium carbonate, silicon dioxide, aluminium oxide, calcium zirconia complex Liquid: water | Powder: tricalcium silicate, dicalcium silicate, calcium oxide, calcium carbonate, zirconium oxide, iron oxide Liquid: calcium chloride, water-soluble polymer, water | Light-curing single paste: resin bis-phenyl glycidyl methacrylate (BisGMA) & polyethylene glycol dimethacrylate (PEGD) modified calcium silicate filled with CaO, calcium silicate particles (type III Portland cement), Sr glass, fumed silica, barium sulphate, barium zirconate | Diurethane dimethacrylate. bis (2-(methacryloyloxy) ethyl) phosphate, barium glass, ionomer glass, polyacrylic acid/maleic acid copolymer, dual-cure chemistry, sodium fluoride, colorants |
Color | White | White | White | White | White | Tooth-shade |
Mixing | 0.5 g pouches of powder + pre-measured unit dose of water (mixed manually) | Powder + liquid (mixed manually) | 0.3 g pouches of powder + 3 drops of water (mixed manually) | 0.7 g capsule of powder + 5 drops of liquid (30 s; 4000–4200 rpm) | Dispensed directly from a flowable syringe (no mixing) | Two-paste system dispensed directly from an automix syringe |
Setting reaction | Hydration reaction | Light-cure (20 s) | 3 setting mechanisms:
| |||
MTA + water→calcium hydroxide + calcium silicate hydrate | Tricalcium silicate + water→hydrated calcium silicate gel + calcium hydroxide |
Property | Material | ||||||
---|---|---|---|---|---|---|---|
MTA | Biodentine | TheraCal LC | ACTIVA BioACTIVE BASE/LINER | ||||
ProRoot MTA | MTA Angelus | RetroMTA | |||||
Discoloration of tooth structure | + | + | + | - | - | - | |
Final setting time (min) | 261 ± 21 [40] 228.33 ± 2.88 [37] | 24.0 [38] 48.3 ± 4 [41,42] 83.66 ± 17.61 [39] | 12.66 ± 3.05 [39] | 45.0 [43] 85.66 ± 6.03 [37] | Immediate | 2.5–3.0 | |
Single visit treatment | - | - | - | + | + | + | |
Handling | + | + | + | ++ | +++ | +++ | |
Consistency | Granular, initial looseness | Uniform, putty-like | Flowable | Flowable | |||
Cytotoxicity | NA | NA | NA | NA | Observed | Observed | |
Radiopacity (mm Al) | 6.4–8.5 [44] | 4.5–5.96 [44] | 4.07 ± 0.20 [45] 3.01 ± 0.09 [46] | 1.5–4.1 [43,44] 2.79 ± 0.22 [47] | 2.17 ± 0.17 [47] | NA | |
Solubility at 24 h (%) | 1.735 ± 0.328 [48] 10.89 ± 0.48 [26] | 29.55 ± 2.35 [26] | 1.447 ± 0.201 [48] | 11.83 ± 0.52 [26] | 2.75 ± 1.04 [26] | NA | |
Bond strength to dentine (MPa) | After 24 h | 0 [49] | NA | 1.15 ± 0.32 [50] | 1.01 ± 0.13 [50] | 0.44 ± 0.20 [50] 0.09 ± 0.20 [51] | NA |
After 7 days | 0.85 ± 1.42 [49] | NA | NA | 9.75 ± 2.19 [49] | NA | NA | |
After 14 days | 4.96 ± 4.54 [49] | NA | NA | 9.34 ± 1.01 [49] | NA | 23.7 ± 17.8 [52] after 28 days after DBA application | |
SBS to composite after 24 h (MPa) | Methacrylate-based composites | 8.9 ± 5.7 [53] | 11.40 ± 3.19 [54] SE DBA (7th generation) | 4.71 ± 2.35 [55] SE DBA (7th generation) | 17.7 ± 6.2 [53] | 19.3 ± 8.4 [56] | NA |
Silorane-based composites | 7.4 ± 3.3 [53] | NA | NA | 8.0 ± 3.6 [53] | 3.6 ± 2.5 [56] | ||
Clinical success rate in VPT (%) | 80–97 [31,57,58] (up to 9–10 years) | 73–96 | NA | NA | |||
Cost of single package | €45 for 0.5 g | €50 for 1 g | €14 for 0.3 g | €10 for a 0.7 g capsule | €20 for a 1 g syringe | €90 for a 7 mL syringe | |
Approximate cost per application (€) | 22.5 | 12.5 | 14 | 10 | 5 | 3.5 |
Property | Material | ||||||
---|---|---|---|---|---|---|---|
MTA | Biodentine | TheraCal LC | ACTIVA BioACTIVE BASE/LINER | ||||
ProRoot MTA | MTA Angelus | RetroMTA | |||||
Marginal seal to dentine |
|
|
| ||||
pH Initially/Endpoint | 9.93/8.00 [45] 12.48/11.56 [73] 10.99/7.20 [26] | 10.48–9.45 [74] 11.71–10.57 [73] 11.31–8.94 [26] | 9.93/7.9 [45] | 11.98/11.16 [75] 11.63/9.21 [26] | 10.66/9.85 [73] 8.54/8.00 [26] | 8.00 | |
Calcium release (ppm) | 15.7–27.4 [26] | 11.7–55.1 [26] | NA | 18.0–95.3 [26] | 12.6–34.2 [26] | NA | |
Pulp/dentine treatment | Rinse with 2.6–5.0% NaOCl | - | - | Hemostasis | Hemostasis | Lightly dry, DBA for higher SBS [52] (E&R DBA not required acc. to manufacturer) | |
Response of the pulp |
|
|
|
| |||
Hard tissue barrier quality |
|
|
| NA | |||
Surface treatment before composite placement | Recommended by manufacturer | 37% H3PO4 (15 s) DBA | - | - | DBA | DBA | ACTIVA BioACTIVE RESTORATIVE or DBA + composite [52] |
Recommended by research | E&R DBA [76,77,78] | 2-SE DBA [79,80] | E&R DBA (higher SBS) [81] | NA | |||
9% HF (90 s), Silane [82] | (after 72 h) 50-µm Al2O3 (15 s, 7 mm distance) [54] | ||||||
Maturation period | ≥7 days [83,84] 1 year [85] | 72 h [86] >2 weeks [87,88] | - | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunert, M.; Lukomska-Szymanska, M. Bio-Inductive Materials in Direct and Indirect Pulp Capping—A Review Article. Materials 2020, 13, 1204. https://doi.org/10.3390/ma13051204
Kunert M, Lukomska-Szymanska M. Bio-Inductive Materials in Direct and Indirect Pulp Capping—A Review Article. Materials. 2020; 13(5):1204. https://doi.org/10.3390/ma13051204
Chicago/Turabian StyleKunert, Marta, and Monika Lukomska-Szymanska. 2020. "Bio-Inductive Materials in Direct and Indirect Pulp Capping—A Review Article" Materials 13, no. 5: 1204. https://doi.org/10.3390/ma13051204
APA StyleKunert, M., & Lukomska-Szymanska, M. (2020). Bio-Inductive Materials in Direct and Indirect Pulp Capping—A Review Article. Materials, 13(5), 1204. https://doi.org/10.3390/ma13051204