Numerical Study on the Variability of Plastic CTOD
Abstract
1. Introduction
2. Numerical Model
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Metamodeling
3.3. Metamodel Validation
3.4. Variability Analysis Based on Metamodels
4. Conclusions
- The type of screening DOE and analysis does not interfere with the identification of the relevant parameters influencing the plastic CTOD range: the parameters E, Y0 and Fmax are consistently shown to be the most influential;
- Both FCCCD and BBD metamodeling approaches provide similar and accurate predictions of the plastic CTOD range, with RRMSE = 1.7% (FCCCD) and RRMSE = 0.9% (BBD);
- The predicted variability in the plastic CTOD range results presents right-skewed distributions that follow a coefficient of variation close to 15%.
Author Contributions
Funding
Conflicts of Interest
References
- Paris, P.; Erdogan, F. A critical analysis of crack propagation laws. J. Basic. Eng. 1963, 85, 528–534. [Google Scholar] [CrossRef]
- Elber, W. The significance of fatigue crack closure. Damage Toler. Aircr. Struct. 1971, 486, 230–242. [Google Scholar]
- Wang, H.; Zhang, W.F.; Sun, F.Q.; Zhang, W. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation. Materials 2017, 10, 543. [Google Scholar] [CrossRef] [PubMed]
- González, S.B. Phenomenological Approach to Probabilistic Models of Damage Accumulation—Application to the Analysis and Prediction of Fatigue Crack Growth. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 2019. [Google Scholar]
- Castillo, E.; Canteli, A.F.; Siegele, D. Obtaining S–N curves from crack growth curves: An alternative to self-similarity. Int. J. Fract. 2014, 187, 159–172. [Google Scholar] [CrossRef]
- Zhu, S.P.; Foletti, S.; Beretta, S. Probabilistic framework for multiaxial LCF assessment under material variability. Int. J. Fatigue 2017, 103, 371–385. [Google Scholar] [CrossRef]
- Sankararaman, S.; Ling, Y.; Shantz, C.; Mahadevan, S. Uncertainty quantification in fatigue crack growth prognosis. Int. J. Progn. Health Manag. 2011, 2, 1–14. [Google Scholar]
- Wentao, H.; Jingxi, L.; De, X. Probabilistic life assessment on fatigue crack growth in mixed-mode by coupling of Kriging model and finite element analysis. Eng. Fract. Mech. 2015, 139, 56–77. [Google Scholar]
- Kim, J.H.; Chau-Dinh, T.; Zi, G.; Lee, W.W.; Kong, J.S. Probabilistic fatigue integrity assessment in multiple crack growth analysis associated with equivalent initial flaw and material variability. Eng. Fract. Mech. 2016, 156, 182–196. [Google Scholar] [CrossRef]
- Vélez, A.; Sánchez, A.; Fernández, M.; Muñiz, Z. Multivariate analysis to relate CTOD values with material properties in steel welded joints for the offshore wind power industry. Energies 2019, 12, 4001. [Google Scholar] [CrossRef]
- Sankararaman, S.; Ling, L.; Mahadevan, S. Uncertainty quantification and model validation of fatigue crack growth prediction. Eng. Fract. Mech. 2011, 78, 1487–1504. [Google Scholar] [CrossRef]
- Ocampo, J.D.; Crosby, N.E.; Millwater, H.R.; Anagnostou, E.L.; Engel, S.J.; Madsen, J.S.; Engel, K.W. Probabilistic damage tolerance for aviation fleets using a kriging surrogate model. In Proceedings of the AIAA SciTech Conference, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Leser, P.; Hochhalter, J.D.; Warner, J.E.; Newman, J.A.; Leser, W.P.; Wawrzynek, P.A.; Yuan, F.-G. Probabilistic fatigue damage prognosis using surrogate models trained via three-dimensional finite element analysis. Struct. Health Monit. 2017, 16, 291–308. [Google Scholar] [CrossRef]
- Millwater, H.; Ocampo, J.; Crosby, N. Probabilistic methods for risk assessment of airframe digital twin structures. Eng. Fract. Mech. 2019, 221, 106674. [Google Scholar] [CrossRef]
- Karve, P.M.; Guo, Y.; Kapusuzoglu, B.; Mahadevan, S.; Haile, M.A. Digital twin approach for damage-tolerant mission planning under uncertainty. Eng. Fract. Mech. 2020, 225, 106766. [Google Scholar] [CrossRef]
- White, P.; Molent, L.; Barter, S. Interpreting fatigue test results using a probabilistic fracture approach. Int. J. Fatigue 2005, 27, 752–767. [Google Scholar] [CrossRef]
- Virkler, D.A.; Hillberry, B.M.; Goel, P.K. The Statistical Nature of Fatigue Crack Propagation. J. Eng. Mater. Technol. 1979, 101, 148–153. [Google Scholar] [CrossRef]
- Wu, W.F.; Ni, C.C. Statistical aspects of some fatigue crack growth data. Eng. Fract. Mech. 2007, 74, 2952–2963. [Google Scholar] [CrossRef]
- Bahloul, A.; Ahmed, A.B.; Bouraoui, C. An engineering predictive approach of fatigue crack growth behavior: The case of the lug-type joint. C R Mec. 2018, 346, 1–12. [Google Scholar] [CrossRef]
- Antunes, F.V.; Branco, R.; Prates, P.A.; Borrego, L. Fatigue crack growth modelling based on CTOD for the 7050-T6 alloy. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 1309–1320. [Google Scholar] [CrossRef]
- Tvergaard, V. On fatigue crack growth in ductile materials by crack–tip blunting. J. Mech. Phys. Solids 2004, 52, 2149–2166. [Google Scholar] [CrossRef]
- Pippan, R.; Grosinger, W. Fatigue crack closure: From LCF to small scale yielding. Int. J. Fatigue 2013, 46, 41–48. [Google Scholar] [CrossRef]
- Vasco-Olmo, J.M.; Díaz, F.A.; Antunes, F.A.; James, M.N. Plastic CTOD as fatigue crack growth characterising parameter in 2024-T3 and 7050-T6 aluminium alloys using DIC. Fatigue Fract. Eng. Mater. Struct. 2020, 1–12. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Alves, J.L.; Menezes, L.F. Algorithms and strategies for treatment of large deformation frictional contact in the numerical simulation of deep drawing process. Arch. Comput. Meth. Eng. 2008, 15, 113–162. [Google Scholar] [CrossRef]
- Chaboche, J.L. A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 2008, 24, 1642–1693. [Google Scholar] [CrossRef]
- Prates, P.A.; Adaixo, A.S.; Oliveira, M.C.; Fernandes, J.V. Numerical study on the effect of mechanical properties variability in sheet metal forming processes. Int. J. Adv. Manuf. Technol. 2018, 96, 561–580. [Google Scholar] [CrossRef]
- Lasdon, L.S.; Waren, A.D.; Jain, A.; Ratner, M.W. Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Optimization; NTIS National Technical Information Service, U.S. Department of Commerce: Cleveland, OH, USA, 1975. [Google Scholar]
- Bonte, M.H.A. Optimisation Strategies for Metal Forming Processes. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2007. [Google Scholar]
AA7050-T6 | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) |
---|---|---|---|---|---|---|---|
µ | 71.70 | 0.3300 | 420.50 | 228.91 | 198.35 | 385.29 | 19.26 |
SD | 3.59 | 0.0165 | 21.03 | 11.45 | 9.92 | 19.26 | 0.96 |
P2.5 | 64.67 | 0.2977 | 379.29 | 206.48 | 178.91 | 347.53 | 17.37 |
P97.5 | 78.73 | 0.3623 | 461.71 | 251.34 | 217.79 | 423.05 | 21.15 |
Simulation | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) | δp (µm) |
---|---|---|---|---|---|---|---|---|
1 | µ | µ | µ | µ | µ | µ | µ | 0.334 |
2 | P2.5 | µ | µ | µ | µ | µ | µ | 0.364 |
3 | P97.5 | µ | µ | µ | µ | µ | µ | 0.304 |
4 | µ | P2.5 | µ | µ | µ | µ | µ | 0.340 |
5 | µ | P97.5 | µ | µ | µ | µ | µ | 0.326 |
6 | µ | µ | P2.5 | µ | µ | µ | µ | 0.379 |
7 | µ | µ | P97.5 | µ | µ | µ | µ | 0.303 |
8 | µ | µ | µ | P2.5 | µ | µ | µ | 0.337 |
9 | µ | µ | µ | P97.5 | µ | µ | µ | 0.326 |
10 | µ | µ | µ | µ | P2.5 | µ | µ | 0.341 |
11 | µ | µ | µ | µ | P97.5 | µ | µ | 0.322 |
12 | µ | µ | µ | µ | µ | P2.5 | µ | 0.264 |
13 | µ | µ | µ | µ | µ | P97.5 | µ | 0.421 |
14 | µ | µ | µ | µ | µ | µ | P2.5 | 0.335 |
15 | µ | µ | µ | µ | µ | µ | P97.5 | 0.333 |
Simulation | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) | δp (µm) |
---|---|---|---|---|---|---|---|---|
1 | P2.5 | P2.5 | P2.5 | P2.5 | P2.5 | P2.5 | P2.5 | 0.346 |
2 | P97.5 | P2.5 | P2.5 | P2.5 | P97.5 | P2.5 | P97.5 | 0.273 |
3 | P2.5 | P97.5 | P2.5 | P2.5 | P97.5 | P97.5 | P2.5 | 0.529 |
4 | P97.5 | P97.5 | P2.5 | P2.5 | P2.5 | P97.5 | P97.5 | 0.499 |
5 | P2.5 | P2.5 | P97.5 | P2.5 | P97.5 | P97.5 | P97.5 | 0.418 |
6 | P97.5 | P2.5 | P97.5 | P2.5 | P2.5 | P97.5 | P2.5 | 0.366 |
7 | P2.5 | P97.5 | P97.5 | P2.5 | P2.5 | P2.5 | P97.5 | 0.269 |
8 | P97.5 | P97.5 | P97.5 | P2.5 | P97.5 | P2.5 | P2.5 | 0.220 |
9 | P2.5 | P2.5 | P2.5 | P97.5 | P2.5 | P97.5 | P97.5 | 0.561 |
10 | P97.5 | P2.5 | P2.5 | P97.5 | P97.5 | P97.5 | P2.5 | 0.425 |
11 | P2.5 | P97.5 | P2.5 | P97.5 | P97.5 | P2.5 | P97.5 | 0.492 |
12 | P97.5 | P97.5 | P2.5 | P97.5 | P2.5 | P2.5 | P2.5 | 0.270 |
13 | P2.5 | P2.5 | P97.5 | P97.5 | P97.5 | P2.5 | P2.5 | 0.273 |
14 | P97.5 | P2.5 | P97.5 | P97.5 | P2.5 | P2.5 | P97.5 | 0.232 |
15 | P2.5 | P97.5 | P97.5 | P97.5 | P2.5 | P97.5 | P2.5 | 0.421 |
16 | P97.5 | P97.5 | P97.5 | P97.5 | P97.5 | P97.5 | P97.5 | 0.324 |
OFAT | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) |
---|---|---|---|---|---|---|---|
Main Effect | 0.0598 | 0.0133 | 0.0752 | 0.0109 | 0.0192 | 0.1561 | 0.0016 |
Index of Influence | 0.0895 | 0.0199 | 0.1125 | 0.0164 | 0.0287 | 0.2335 | 0.0024 |
ANOVA p-value | 0.0010 | 0.2309 | 0.0003 | 0.3144 | 0.1020 | 0.0000 | 0.8778 |
FFD | E (GPa) | ν | Y0 (MPa) | CX | XSat (MPa) | Fmax (N) | Fmin (N) |
---|---|---|---|---|---|---|---|
Main Effect | 0.0874 | 0.0162 | 0.1087 | 0.0101 | 0.0014 | 0.1460 | 0.0270 |
Index of Influence | 0.1182 | 0.0219 | 0.1469 | 0.0136 | 0.0020 | 0.1974 | 0.0365 |
ANOVA p-value | 0.0087 | 0.5039 | 0.0031 | 0.6751 | 0.9516 | 0.0007 | 0.2815 |
RSM Coefficients | Face-Centered Central Composite Design | Box-Behnken Design |
---|---|---|
β0 | 3.061 × 100 | 1.814 × 10−1 |
β1 | −3.124 × 10−2 | −6.938 × 10−2 |
β2 | −6.633 × 10−3 | −7.472 × 10−4 |
β3 | −1.783 × 10−3 | 2.630 × 10−3 |
β4 | 3.220 × 10−5 | 9.827 × 10−6 |
β5 | −7.202 × 10−6 | −3.067 × 10−5 |
β6 | −6.909 × 10−6 | −1.082 × 10−5 |
β7 | 1.158 × 10−4 | 7.009 × 10−5 |
β8 | 7.281 × 10−6 | 3.872 × 10−6 |
β9 | 9.765 × 10−6 | 8.157 × 10−6 |
Simulation | E (GPa) | Y0 (MPa) | Fmax (N) | δp (µm) | δpRSM (µm) | |
---|---|---|---|---|---|---|
1 | P2.5 | P2.5 | P2.5 | 0.323 | 0.334 | R2 = 0.9927 RRMSE = 2.0% |
2 | P97.5 | P2.5 | P2.5 | 0.270 | 0.264 | |
3 | P2.5 | P97.5 | P2.5 | 0.271 | 0.265 | |
4 | P97.5 | P97.5 | P2.5 | 0.225 | 0.233 | |
5 | P2.5 | P2.5 | P97.5 | 0.543 | 0.534 | |
6 | P97.5 | P2.5 | P97.5 | 0.452 | 0.457 | |
7 | P2.5 | P97.5 | P97.5 | 0.418 | 0.423 | |
8 | P97.5 | P97.5 | P97.5 | 0.395 | 0.383 | |
9 | P2.5 | µ | µ | 0.364 | 0.363 | |
10 | P97.5 | µ | µ | 0.304 | 0.308 | |
11 | µ | P2.5 | µ | 0.379 | 0.378 | |
12 | µ | P97.5 | µ | 0.303 | 0.307 | |
13 | µ | µ | P2.5 | 0.264 | 0.256 | |
14 | µ | µ | P97.5 | 0.421 | 0.431 | |
15 | µ | µ | µ | 0.334 | 0.330 |
Simulation | E (GPa) | Y0 (MPa) | Fmax (N) | δp (µm) | δpRSM (µm) | |
---|---|---|---|---|---|---|
1 | P2.5 | P2.5 | µ | 0.417 | 0.419 | R2 = 0.9996 RRMSE = 0.4% |
2 | P97.5 | P2.5 | µ | 0.348 | 0.349 | |
3 | P2.5 | P97.5 | µ | 0.335 | 0.334 | |
4 | P97.5 | P97.5 | µ | 0.277 | 0.276 | |
5 | P2.5 | µ | P2.5 | 0.293 | 0.292 | |
6 | P97.5 | µ | P2.5 | 0.244 | 0.244 | |
7 | P2.5 | µ | P97.5 | 0.471 | 0.471 | |
8 | P97.5 | µ | P97.5 | 0.389 | 0.391 | |
9 | µ | P2.5 | P2.5 | 0.294 | 0.293 | |
10 | µ | P97.5 | P2.5 | 0.246 | 0.248 | |
11 | µ | P2.5 | P97.5 | 0.493 | 0.490 | |
12 | µ | P97.5 | P97.5 | 0.378 | 0.378 | |
13 | µ | µ | µ | 0.334 | 0.334 |
δp | FCCCD-Based Model | BBD-Based Model |
---|---|---|
Mean value, µ | 0.338 µm | 0.340 µm |
Standard deviation, SD | 0.050 µm | 0.049 µm |
Coefficient of variation, CV | 14.9% | 14.5% |
2.5th percentile, P2.5 | 0.252 µm | 0.257 µm |
97.5th percentile, P97.5 | 0.448 µm | 0.448 µm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
André Prates, P.; Eusébio Marques, A.; Frias Borges, M.; Madeira Branco, R.; Antunes, F.V. Numerical Study on the Variability of Plastic CTOD. Materials 2020, 13, 1276. https://doi.org/10.3390/ma13061276
André Prates P, Eusébio Marques A, Frias Borges M, Madeira Branco R, Antunes FV. Numerical Study on the Variability of Plastic CTOD. Materials. 2020; 13(6):1276. https://doi.org/10.3390/ma13061276
Chicago/Turabian StyleAndré Prates, Pedro, Armando Eusébio Marques, Micael Frias Borges, Ricardo Madeira Branco, and Fernando Ventura Antunes. 2020. "Numerical Study on the Variability of Plastic CTOD" Materials 13, no. 6: 1276. https://doi.org/10.3390/ma13061276
APA StyleAndré Prates, P., Eusébio Marques, A., Frias Borges, M., Madeira Branco, R., & Antunes, F. V. (2020). Numerical Study on the Variability of Plastic CTOD. Materials, 13(6), 1276. https://doi.org/10.3390/ma13061276