Soft Ferromagnetic Bulk Metallic Glass with Potential Self-Healing Ability
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Thermal Characterization
3.2. Mechanical Properties
3.3. Fracture Surface Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inoue, A.; Shen, B.; Chang, C. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 2004, 52, 4093–4099. [Google Scholar] [CrossRef]
- Inoue, A.; Shinohara, Y.; Gook, J.S. Thermal and Magnetic Properties of Bulk Fe-Based Glassy Alloys Prepared by Copper Mold Casting. Mater. Trans. JIM 1995, 36, 1427–1433. [Google Scholar] [CrossRef] [Green Version]
- Stoica, M.; Eckert, J.; Roth, S.; Zhang, Z.F.; Schultz, L.; Wang, W.H. Mechanical behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glass. Intermetallics 2005, 13, 764–769. [Google Scholar] [CrossRef]
- Trexler, M.M.; Thadhani, N.N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55, 759–839. [Google Scholar] [CrossRef]
- Hui, X.; Liu, S.; Pang, S.; Zhuo, L.; Zhang, T.; Chen, G.; Liu, Z. High-zirconium-based bulk metallic glasses with large plasticity. Scripta Mater. 2010, 63, 239–242. [Google Scholar] [CrossRef]
- Calin, M.; Eckert, J.; Schultz, L. Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 2003, 48, 653–658. [Google Scholar] [CrossRef]
- Fan, C.; Inoue, A. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature. Appl. Phys. Lett. 2000, 77, 46–48. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.-Q.; Cao, A.-J.; Xu, J.; Ma, E. Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 2009, 57, 1154–1164. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.L. A New Fe-based Bulk Glassy Alloy with Outstanding Mechanical Properties. Adv. Mater. 2004, 16, 2189–2192. [Google Scholar] [CrossRef]
- Gu, X.; McDermott, A.; Poon, S.J.; Shiflet, G.J. Critical Poisson’s ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel. Appl. Phys. Lett. 2006, 88, 211905. [Google Scholar] [CrossRef]
- Stoica, M.; Scudino, S.; Bednarčik, J.; Kaban, I.; Eckert, J. FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction. J. Appl. Phys. 2014, 115, 053520. [Google Scholar] [CrossRef]
- Jiao, Z.; Li, H.; Gao, J.; Wu, Y.; Lu, Z. Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics 2011, 19, 1502–1508. [Google Scholar] [CrossRef]
- Gan, Z.; Yi, H.; Pu, J.; Wang, J.; Xiao, J. Preparation of bulk amorphous Fe–Ni–P–B–Ga alloys from industrial raw materials. Scripta Mater. 2003, 48, 1543–1547. [Google Scholar] [CrossRef]
- Pawlik, P.; Davies, H.; Gibbs, M. The glass forming abilities and magnetic properties of Fe–Al–Ga–P–B–Si and Fe–Al–Ga–P–B–C alloys. Mater. Sci. Eng. A 2004, 375, 372–376. [Google Scholar] [CrossRef]
- Shen, B.-L.; Koshiba, H.; Mizushima, T.; Inoue, A. Bulk amorphous Fe–Ga–P–B–C alloys with a large supercooled liquid region. Mater. Trans. JIM 2000, 41, 873–876. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J. Geometry of the structure of monatomic liquids. Nature 1960, 185, 68–70. [Google Scholar] [CrossRef]
- Bitoh, T.; Makino, A.; Inoue, A.; Greer, A. Large bulk soft magnetic [(Fe0.5Co0.5)0.75B0.20Si0.05]96Nb4 glassy alloy prepared by B2O3 flux melting and water quenching. Appl. Phys. Lett. 2006, 88, 182510. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, D. Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 1952, 20, 411–424. [Google Scholar] [CrossRef]
- Herlach, D.M. Non-equilibrium solidification of undercooled metallic metls. Mater. Sci. Eng. R 1994, 12, 177–272. [Google Scholar] [CrossRef]
- Christian, J.W. CHAPTER 10—The Classical Theory of Nucleation. In The Theory of Transformations in Metals and Alloys; Pergamon: Oxford, UK, 2002; pp. 422–479. [Google Scholar] [CrossRef]
- Sarac, B.; Ivanov, Y.P.; Chuvilin, A.; Schöberl, T.; Stoica, M.; Zhang, Z.; Eckert, J. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat. Commun. 2018, 9, 1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Greer, A.; Cheng, Y.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Parthiban, R.; Stoica, M.; Kaban, I.; Ravi, K.; Eckert, J. Viscosity and fragility of the supercooled liquids and melts from the Fe–Co–B–Si–Nb and Fe–Mo–P–C–B–Si glass-forming alloy systems. Intermetallics 2015, 66, 48–55. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Jinschek, J.R.; Li, J.F.; Viehland, D. Nanoscale precipitates in magnetostrictive Fe1−xGax alloys for 0.1 <x <0.23. J. Alloys Compd. 2010, 501, 148–153. [Google Scholar] [CrossRef]
- Ikeda, O.; Kainuma, R.; Ohnuma, I.; Fukamichi, K.; Ishida, K. Phase equilibria and stability of ordered b.c.c. phases in the Fe-rich portion of the Fe–Ga system. J. Alloys Compd. 2002, 347, 198–205. [Google Scholar] [CrossRef]
- Petculescu, G.; Wu, R.; McQueeney, R. Chapter three—Magnetoelasticity of bcc Fe–Ga Alloys. In Handbook of Magnetic Materials; Buschow, K.H.J., Ed.; Elsevier: North Holland, The Netherlands, 2012; Volume 20, pp. 123–226. [Google Scholar]
Compositions | Tg (K) | Tx (K) | Tp1 (K) | Tp2 (K) | Tp3 (K) | Tliq (K) | Trg | γ | ΔTx (K) |
---|---|---|---|---|---|---|---|---|---|
FeCoBSiNb | 825 | 858 | 867 | 985 | 1050 | 1475 | 0.56 | 0.373 | 33 |
FeCoBSiNb + 0.5Ga | 825 | 863 | 873 | 1037 | - | 1475 | 0.56 | 0.375 | 38 |
FeCoBSiNb + 1Ga | 825 | 863 | 873 | 1038 | - | 1440 | 0.57 | 0.381 | 38 |
FeCoBSiNb + 1.5Ga | 825 | 869 | 873 | 1038 | - | 1440 | 0.57 | 0.383 | 41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramasamy, P.; Stoica, M.; Ababei, G.; Lupu, N.; Eckert, J. Soft Ferromagnetic Bulk Metallic Glass with Potential Self-Healing Ability. Materials 2020, 13, 1319. https://doi.org/10.3390/ma13061319
Ramasamy P, Stoica M, Ababei G, Lupu N, Eckert J. Soft Ferromagnetic Bulk Metallic Glass with Potential Self-Healing Ability. Materials. 2020; 13(6):1319. https://doi.org/10.3390/ma13061319
Chicago/Turabian StyleRamasamy, Parthiban, Mihai Stoica, Gabriel Ababei, Nicoleta Lupu, and Jürgen Eckert. 2020. "Soft Ferromagnetic Bulk Metallic Glass with Potential Self-Healing Ability" Materials 13, no. 6: 1319. https://doi.org/10.3390/ma13061319
APA StyleRamasamy, P., Stoica, M., Ababei, G., Lupu, N., & Eckert, J. (2020). Soft Ferromagnetic Bulk Metallic Glass with Potential Self-Healing Ability. Materials, 13(6), 1319. https://doi.org/10.3390/ma13061319