Mechanical Assessment of Fatigue Characteristics between Single- and Multi-Directional Cyclic Loading Modes on a Dental Implant System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Mechanical Test Preparation: Fixation of Specimens
2.3. Mechanical Test Methods: Static and Dynamic Shear-Compression Tests
2.4. Surface Morphological Analysis
2.5. Statistical Analysis
3. Results
3.1. The Result of the Static Shear-Compression Test
3.2. Failure Cycles and Displacement Change of Fatigue Test
3.3. Fracture Pattern of the Implants
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caldas, A.F., Jr.; Marcenes, W.; Sheiham, A. Reasons for tooth extraction in a Brazilian population. Int. Dent. J. 2000, 50, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Chestnutt, I.G.; Binnie, V.I.; Taylor, M.M. Reasons for tooth extraction in Scotland. J. Dent. 2000, 28, 295–297. [Google Scholar] [CrossRef]
- Chrysanthakopoulos, N.A. Periodontal reasons for tooth extraction in a group of Greek army personnel. J. Dent. Res. Dent. Clin. Dent. Prospect. 2011, 5, 55–60. [Google Scholar] [CrossRef]
- Brånemark, P.I.; Breine, U.; Adell, R.; Hansson, B.O.; Lindström, J.; Ohlsson, Å. Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand. J. Plast. Reconstr. Surg. 1969, 3, 81–100. [Google Scholar] [CrossRef]
- Muley, N.; Prithviraj, D.R.; Gupta, V. Evolution of External and Internal Implant to Abutment Connection. Int. J. Oral implantol. Clin. Res. 2012, 3, 122–129. [Google Scholar]
- Gracis, S.; Michalakis, K.; Vigolo, P.; Vult von Steyern, P.; Zwahlen, M.; Sailer, I. Internal vs. external connections for abutments/reconstructions: A systematic review. Clin. Oral Implants Res. 2012, 23, 202–216. [Google Scholar] [CrossRef]
- Weinberg, L.A. The biomechanics of force distribution in implant-supported prostheses. Int. J. Oral Maxillofac. Implants 1993, 8, 19–31. [Google Scholar]
- Adell, R.; Eriksson, B.; Lekholm, U.; Brånemark, P.I.; Jemt, T. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int. J. Oral Maxillofac. Implants 1990, 5, 347–359. [Google Scholar]
- Becker, W.; Becker, B.E. Replacement of maxillary and mandibular molars with single endosseous implant restorations: A retrospective study. J. Prosthet. Dent. 1995, 74, 51–55. [Google Scholar] [CrossRef]
- Sumi, T.; Braian, M.; Shimada, A.; Shibata, N.; Takeshita, K.; Vandeweghe, S.; Coelho, P.G.; Wennerberg, A.; Jimbo, R. Characteristics of implant-CAD/CAM abutment connections of two different internal connection systems. J. Oral Rehab. 2012, 39, 391–398. [Google Scholar] [CrossRef]
- Hansson, S. Implant-Abutment Interface: Biomechanical Study of Flat Top versus Conical. Clin. Impl. Dent. Relat. Res. 2000, 2, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Norton, M.R. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J. Prosthet. Dent. 1999, 81, 159–166. [Google Scholar] [CrossRef]
- Eckert, S.E.; Meraw, S.J.; Cal, E.; Ow, R.K. Analysis of Incidence and Associated Factors with Fractured Implants: A Retrospective Study. Int. J. Oral Maxillofac. Implants 2000, 15, 662–667. [Google Scholar] [PubMed]
- Schwarz, M.S. Mechanical complications of dental implants. Clin. Oral Implants Res. 2000, 11, 156–158. [Google Scholar] [CrossRef]
- Won, H.Y.; Choi, Y.S.; Cho, I.H. Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants. J. Dent. Rehab. Appl. Sci. 2010, 26, 121–143. [Google Scholar]
- Alkan, I.; Sertgoz, A.; Ekici, B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J. Prosthet. Dent. 2004, 91, 319–325. [Google Scholar] [CrossRef]
- Versluis, A.; Korioth, T.W.P.; Cardoso, A.C. Numerical Analysis of a Dental Implant System Preloaded with a Washer. Int. Oral Maxillofac. Implants 1999, 14, 337–341. [Google Scholar]
- ISO 14801:2016(E). Dentistry-Implants-Dynamic Loading Test for Endosseous Dental Implants; International Organization for Standardization: Ginevra, Switzerland, 2016. [Google Scholar]
- Agrawal, K.R.; Lucas, P.W.; Bruce, I.C.; Prinz, J.F. Food properties that influence neuromuscular activity during human mastication. J. Dent. Res. 1998, 77, 1931–1938. [Google Scholar] [CrossRef]
- Hiiemae, K. Mechanisms of food reduction, transport and deglutition: How the texture of food affects feeding behavior. J. Texture Stud. 2004, 35, 171–200. [Google Scholar] [CrossRef]
- DeLong, R.; Douglas, W.H. An artificial oral environment for testing dental materials. IEEE Trans. Biomed. Eng. 1991, 38, 339–345. [Google Scholar] [CrossRef]
- Woda, A.; Foster, K.; Mishellany, A.; Peyron, M.A. Adaptation of healthy mastication to factors pertaining to the individual or to the food. Physiol. Behav. 2006, 89, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.; Gondo, R.; Araújo, É.; Roesler, C.R.D.M.; Baratieri, L.N. Influence of surrounding wall thickness on the fatigue resistance of molars restored with ceramic inlay. Braz. Oral Res. 2014, 28, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raabe, D.; Harrison, A.; Ireland, A.; Alemzadeh, K.; Sandy, J.; Dogramadzi, S.; Melhuish, C.; Burgess, S. Improved single- and multi-contact life-time testing of dental restorative materials using key characteristics of the human masticatory system and a force/position-controlled robotic dental wear simulator. Bioinspir. Biomim. 2012, 7, 016002. [Google Scholar] [CrossRef] [PubMed]
- Jimbo, R.; Halldin, A.; Janda, M.; Wennerberg, A.; Vandewdghe, S. Vertical Fracture and Marginal Bone Loss of Internal-Connection Implants: A Finite Element Analysis. Int. J. Oral Maxillofac. Implants 2013, 28, 171–176. [Google Scholar] [CrossRef]
- Do, G.H.; Lee, S.J.; Kim, J.M.; Kim, S.M. Study on the Fatigue Test and the Accelerated Life Test for Dental Implant using Universal-Joint Test Type. J. Appl. Rehab. 2017, 17, 50–57. [Google Scholar]
- Galindo-Moreno, P.; León-Cano, A.; Ortega-Oller, I.; Monje, A.; O’Valle, F.; Catena, A. Marginal bone loss as success criterion in implant dentistry: Beyond 2 mm. Clin. Oral Impl. Res. 2015, 26, 28–34. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Wang, K.S.; Woo, J.C. Fatigue life and reliability evaluation for dental implants based on computer simulation and limited test data. J. Mech. Eng. Sci. 2013, 227, 554–564. [Google Scholar] [CrossRef]
- Kwak, D.K.; Kim, W.H.; Lee, S.J.; Rhyu, S.H.; Jang, C.Y.; Yoo, J.H. Biomechanical Comparison of Three Different Intramedullary Nails for Fixation of Unstable Basicervical Intertrochanteric Fractures of the Proximal Femur: Experimental Studies. Biomed. Res. Int. 2018, 2018, 7618079. [Google Scholar] [CrossRef]
- Umesh, S.; Padma, S.; Asokan, S.; Srinivas, T. Fiber Bragg grating based bite force measurement. J. Biomech. 2016, 49, 2877–2881. [Google Scholar] [CrossRef]
- Lan, T.-H.; Pan, C.-Y.; Liu, P.-H.; Chou, M.M. Fracture Resistance of Monolithic Zirconia Crowns on Four Occlusal Convergent Abutments in Implant Prosthesis. Appl. Sci. 2019, 9, 2585. [Google Scholar] [CrossRef] [Green Version]
- Batalha-Silva, S.; de Andrada, M.A.C.; Maia, H.P.; Magne, P. Fatigue resistance and crack propensity of large MOD composite resin restorations: Direct versus CAD/CAM inlays. Dent. Mater. 2013, 29, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Goldberg, J.; Edelhoff, D.; Güth, J.F. Composite resin core buildups with and without post for the restoration of endodontically treated molars without ferrule. Oper. Dent. 2016, 41, 64–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magne, P.; Boff, L.L.; Oderich, E.; Cardoso, A.C. Computer-Aided-Design/Computer-Assisted-Manufactured Adhesive Restoration of Molars with a Compromised Cusp: Effect of Fiber-Reinforced Immediate Dentin Sealing and Cusp Overlap on Fatigue Strength. J. Esthet. Restor. Dent. 2012, 24, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Las Casas, E.B.D.; Almeida, A.F.D.; Cimini Junior, C.A.; Gomes, P.D.T.V.; Cornacchia, T.P.M.; Saffar, J.M.E. Determination of tangential and normal components of oral forces. J. Appl. Oral Sci. 2007, 15, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Shemtov-Yona, K.; Rittel, D. Fatigue failure of dental implants in simulated intraoral media. J. Mech. Behav. Biomed. Mater. 2016, 62, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Shemtov-Yona, K.; Rittel, D. Fatigue of Dental Implants: Facts and Fallacies. Dent. J. 2016, 4, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shemtov-Yona, K.; Rittel, D. An overview of the mechanical integrity of dental implants. Biomed. Res. Int. 2015, 2015, 547384. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, E.; Ratta, S.; Mummolo, S.; Tecco, S.; Pecci, R.; Bedini, R.; Marzo, G. Evaluation of an endosseous oral implant system according to UNI EN ISO 14801 fatigue test protocol. Implant Dent. 2014, 23, 665–671. [Google Scholar] [CrossRef]
- Lee, C.K.; Karl, M.; Kelly, J.R. Evaluation of test protocol variables for dental implant fatigue research. Dent. Mater. 2009, 25, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Yamanishi, Y.; Machado, L.S.; Matsumoto, S.; Tovar, N.; Coelho, P.G.; Thompson, V.P.; Imazato, S. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models. J. Prosthodont. Res. 2018, 62, 24–30. [Google Scholar] [CrossRef]
- Callister, W.D. Materials Science and Engineering: An Introduction, 5th ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Velasco, E.; Monsalve-Guil, L.; Jimenez, A.; Ortiz, I.; Moreno-Muñoz, J.; Nuñez-Marquez, E.; Pegueroles, M.; Pérez, P.A.; Gil, F.J. Importance of the roughness and residual stresses of dental implants on fatigue and osseointegration behavior. In vivo study in rabbits. J. Oral Implantol. 2016, 42, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.J.; Planell, J.A.; Padrós, A.; Aparicio, C. The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dent. Mater. 2007, 23, 486–491. [Google Scholar] [CrossRef]
- Pazos, L.; Corengia, P.; Svoboda, H. Effect of surface treatments on the fatigue life of titanium for biomedical applications. J. Mech. Behav. Biomed. Mater. 2010, 3, 416–424. [Google Scholar] [CrossRef] [PubMed]
Specimens | Maximum Load (N) | Displacement at Failure (mm) |
---|---|---|
1 | 1347 | 1.68 |
2 | 1343 | 2.12 |
3 | 1460 | 1.46 |
4 | 1537 | 1.46 |
5 | 1428 | 2.01 |
Average | 1423 | 1.75 |
Standard deviation | 81 | 0.31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.H.; Song, E.S.; Ju, K.W.; Lim, D.; Han, D.-W.; Jung, T.-G.; Jeong, Y.-H.; Lee, J.-H.; Kim, B. Mechanical Assessment of Fatigue Characteristics between Single- and Multi-Directional Cyclic Loading Modes on a Dental Implant System. Materials 2020, 13, 1545. https://doi.org/10.3390/ma13071545
Kim WH, Song ES, Ju KW, Lim D, Han D-W, Jung T-G, Jeong Y-H, Lee J-H, Kim B. Mechanical Assessment of Fatigue Characteristics between Single- and Multi-Directional Cyclic Loading Modes on a Dental Implant System. Materials. 2020; 13(7):1545. https://doi.org/10.3390/ma13071545
Chicago/Turabian StyleKim, Won Hyeon, Eun Sung Song, Kyung Won Ju, Dohyung Lim, Dong-Wook Han, Tae-Gon Jung, Yong-Hoon Jeong, Jong-Ho Lee, and Bongju Kim. 2020. "Mechanical Assessment of Fatigue Characteristics between Single- and Multi-Directional Cyclic Loading Modes on a Dental Implant System" Materials 13, no. 7: 1545. https://doi.org/10.3390/ma13071545
APA StyleKim, W. H., Song, E. S., Ju, K. W., Lim, D., Han, D. -W., Jung, T. -G., Jeong, Y. -H., Lee, J. -H., & Kim, B. (2020). Mechanical Assessment of Fatigue Characteristics between Single- and Multi-Directional Cyclic Loading Modes on a Dental Implant System. Materials, 13(7), 1545. https://doi.org/10.3390/ma13071545