Biocompatible Gels of Chitosan–Buriti Oil for Potential Wound Healing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Gels Synthesis
2.3. Characterizations
2.3.1. Thermal Analysis (TG) and Infrared Spectroscopy (FTIR)
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. Minority Volatile Compounds (MS)
2.3.4. Fatty Acids
2.4. Antibacterial Tests
2.4.1. Bacterial Lineage
2.4.2. Preparation of the Microbial Suspension
2.4.3. Determination of Minimum Inhibitory Concentration (MIC)
2.5. Antioxidant Activity
Β-Carotene Bleaching Test
2.6. Anti-Inflammatory Activity
2.7. Healing Assays
2.7.1. Ethical Aspects
2.7.2. Animals
2.7.3. Procedure of Wounds Excision
2.7.4. Wound Treatment and Evaluation
2.7.5. Macroscopic Evaluation of Skin Lesion in Mice
2.7.6. Qualitative Histopathological Evaluation
3. Results and Discussion
3.1. Characterizations
3.1.1. Thermal Analysis
3.1.2. Infrared Spectroscopy
3.1.3. Scanning Electron Microscopy
3.1.4. Minority Volatile Compounds
3.1.5. Fatty Acids
3.2. Antibacterial Activity
3.3. Antioxidant Activity
3.4. Anti-Inflammatory Activity
3.5. Healing Activity
3.5.1. Macroscopic Analysis of Injuries
3.5.2. Qualitative Histopathological Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moreira, C.; Oliveira, H.; Pires, L.R.; Simões, S.; Barbosa, M.A.; Pêgo, A.P. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomater. 2009, 5, 2995–3006. [Google Scholar] [CrossRef]
- Wang, L.; Rao, R.R.; Stegemann, J.P. Delivery of mesenchymal stem cells in Chitosan/collagen microbeads for orthopedic tissue repair. Cells Tissues Organs 2013, 197, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.O.G.; de Lima, I.S.; Morais, A.Í.S.; Silva, S.O.; de Carvalho, R.B.F.; Ribeiro, A.B.; Osajima, J.A.; Silva Filho, E.C. Chitosan associated with chlorhexidine in gel form: Synthesis, characterization and healing wounds applications. J. Drug Deliv. Sci. Technol. 2019, 49, 375–382. [Google Scholar] [CrossRef]
- Ferreira, M.O.G.; Leite, L.L.R.; de Lima, I.S.; Barreto, H.M.; Nunes, L.C.C.; Ribeiro, A.B.; Osajima, J.A.; da Silva Filho, E.C. Chitosan Hydrogel in combination with Nerolidol for healing wounds. Carbohydr. Polym. 2016, 152, 409–418. [Google Scholar] [CrossRef]
- Crini, G.; Gimbert, F.; Robert, C.; Martel, B.; Adam, O.; Morin-Crini, N.; De Giorgi, F.; Badot, P.M. The removal of Basic Blue 3 from aqueous solutions by chitosan-based adsorbent: Batch studies. J. Hazard. Mater. 2008, 153, 96–106. [Google Scholar] [CrossRef]
- Li, N.; Zhuang, C.; Wang, M.; Sun, X.; Nie, S.; Pan, W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int. J. Pharm. 2009, 379, 131–138. [Google Scholar] [CrossRef]
- Assis, O.B.G.; Leoni, A.M.; Novaes, A.P. Avaliação do Efeito Cicatrizante da Quitosana por Aplicação Tópica em Ratos. Embrapa 2007, 1–16. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/30800/1/DOC292007.pdf (accessed on 22 April 2020).
- Azad, A.K.; Sermsintham, N.; Chandrkrachang, S.; Stevens, W.F. Chitosan membrane as a wound-healing dressing: Characterization and clinical application. J. Biomed. Mater. Res. 2004, 69, 216–222. [Google Scholar] [CrossRef]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P.T.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef]
- Jin, Y.; Ling, P.X.; He, Y.L.; Zhang, T.M. Effects of chitosan and heparin on early extension of burns. Burns 2007, 33, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Gwak, K.S.; Yang, I.; Kim, K.W.; Jeung, E.B.; Chang, J.W.; Choi, I.G. Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia 2009, 80, 290–296. [Google Scholar] [CrossRef]
- Sudheesh Kumar, P.T.; Lakshmanan, V.K.; Anilkumar, T.V.; Ramya, C.; Reshmi, P.; Unnikrishnan, A.G.; Nair, S.V.; Jayakumar, R. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 2012, 4, 2618–2629. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, X.; Xue, X.; Wu, D. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr. Polym. 2012, 88, 75–83. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Santos, U.P.; Campos, J.F.; Torquato, H.F.V.; Paredes-Gamero, E.J.; Carollo, C.A.; Estevinho, L.M.; De Picoli Souza, K.; Dos Santos, E.L. Antioxidant, antimicrobial and cytotoxic properties as well as the phenolic content of the extract from Hancornia speciosa gomes. PLoS ONE 2016, 11, 1–19. [Google Scholar] [CrossRef]
- Silva, J.C.; Rodrigues, S.; Feás, X.; Estevinho, L.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem. Toxicol. 2012, 50, 1790–1795. [Google Scholar] [CrossRef]
- Abdel-Mohsen, A.M.; Jancar, J.; Massoud, D.; Fohlerova, Z.; Elhadidy, H.; Spotz, Z.; Hebeish, A. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int. J. Pharm. 2016, 510, 86–99. [Google Scholar] [CrossRef]
- Pighinelli, L.; Gall, M.C. New Process for Obtaining Nanochitosan/Buriti Oil (Mauritia Flexuosa) Biocomposite: A Biocomposite for Regenerative Medicine and Tissue Engineering. Atena 2008. Available online: https://www.atenaeditora.com.br/post-artigo/9945 (accessed on 22 April 2020).
- Lavoratti, A.; Romanzini, D.; Amico, S.C.; Zattera, A.J. Influence of fibre treatment on the characteristics of buriti and ramie polyester composites. Polym. Polym. Compos. 2017, 25, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Antunes, B.P.; Moreira, A.F.; Gaspar, V.M.; Correia, I.J. Chitosan/arginine-chitosan polymer blends for assembly of nanofibrous membranes for wound regeneration. Carbohydr. Polym. 2015, 130, 104–112. [Google Scholar] [CrossRef]
- Agregán, R.; Lorenzo, J.M.; Munekata, P.E.S.; Dominguez, R.; Carballo, J.; Franco, D. Assessment of the antioxidant activity of Bifurcaria bifurcata aqueous extract on canola oil. Effect of extract concentration on the oxidation stability and volatile compound generation during oil storage. Food Res. Int. 2017, 99, 1095–1102. [Google Scholar] [CrossRef]
- Galego, L.; Almeida, V.; Gonçalves, V.; Costa, M.; Monteiro, I.; Matos, F.; Miguel, G. Antioxidant activity of the essential oils of Thymbra capitata, Origanum vulgare, Thymus mastichina, and Calamintha baetica. Acta Hortic. 2008, 765, 325–334. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Kannathasan, K.; Venkatesalu, V. Antimicrobial activity of fatty acid methyl esters of some members of chenopodiaceae. Z. Fur Nat. Sect. C J. Biosci. 2008, 63, 331–336. [Google Scholar] [CrossRef]
- Lima, L.A.R.d.S.; Johann, S.; Cisalpino, P.S.; Pimenta, L.P.S.; Boaventura, M.A.D. In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A.St.-Hil. (Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis. Rev. Soc. Bras. Med. Trop. 2011, 44, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, M.C.; Aquino, J.S.; Soares, J.; Figueiroa, E.B.; Mesquita, H.M.; Pessoa, D.C.; Stamford, T.M. Buriti oil (Mauritia flexuosa L.) negatively impacts somatic growth and reflex maturation and increases retinol deposition in young rats. Int. J. Dev. Neurosci. 2015, 46, 7–13. [Google Scholar] [CrossRef]
- Hatanaka, E.; Curi, R. Ácidos Graxos E Cicatrização: Uma Revisão. Rev Bras Farm. 2007, 88, 53–58. [Google Scholar]
- Rašković, A.; Milanović, I.; Pavlović, N.; Ćebović, T.; Vukmirović, S.; Mikov, M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. Bmc Complement. Altern. Med. 2014, 14, 1–9. [Google Scholar]
- Nisar, T.; Wang, Z.C.; Yang, X.; Tian, Y.; Iqbal, M.; Guo, Y. Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 2018, 106, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, A.L.; Schwan, R.F.; Dias, D.R.; Schwan-Estrada, K.R.F.; Bravo-Martins, C.E.C. Atividade antimicrobiana de extratos vegetais sobre bactérias patogênicas humanas. Rev. Bras. Plantas Med. 2007, 9, 86–91. [Google Scholar]
- Irana, P.S.; Oscarina, V.d.S.; Margarete, A.F.S.; Norma, S.E.B. Vibrio cholerae non-O1 in bivalve mollusks harvesting area in Bahia, Brazil. Afr. J. Microbiol. Res. 2016, 10, 1005–1010. [Google Scholar]
- Ghuman, S.; Ncube, B.; Finnie, J.F.; McGaw, L.J.; Mfotie Njoya, E.; Coopoosamy, R.M.; Van Staden, J. Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. South Afr. J. Bot. 2019, 126, 232–240. [Google Scholar] [CrossRef]
- Hughes, C.; Ferguson, J. Phenotypic chlorhexidine and triclosan susceptibility in clinical Staphylococcus aureus isolates in Australia. Pathology 2017, 49, 633–637. [Google Scholar] [CrossRef]
- Koleva, I.I.; van Beek, T.A.; Linssen, J.P.H.; de Groot, A.; Evstatieva, L.N. Screening of Plant Extracts for Antioxidant Activity: A Comparative Study on Three Testing Methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef]
- Koolen, H.H.F.; da Silva, F.M.A.; Gozzo, F.C.; de Souza, A.Q.L.; de Souza, A.D.L. Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC-ESI-MS/MS. Food Res. Int. 2013, 51, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, B.S.; De Almeida, C.G.; Faza, L.P.; De Almeida, A.; Diniz, C.G.; Da Silva, V.L.; Grazul, R.M.; Le Hyaric, M. Comparative properties of amazonian oils obtained by different extraction methods. Molecules 2011, 16, 5874–5885. [Google Scholar] [CrossRef] [Green Version]
- Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feás, X.; Estevinho, L.M. Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food Chem. Toxicol. 2014, 63, 233–239. [Google Scholar] [CrossRef]
- Neri-Numa, I.A.; Soriano Sancho, R.A.; Pereira, A.P.A.; Pastore, G.M. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res. Int. 2018, 103, 345–360. [Google Scholar] [CrossRef]
- Kiyozumi, T.; Kanatani, Y.; Ishihara, M.; Saitoh, D.; Shimizu, J.; Yura, H.; Suzuki, S.; Okada, Y.; Kikuchi, M. The effect of chitosan hydrogel containing DMEM/F12 medium on full-thickness skin defects after deep dermal burn. Burns 2007, 33, 642–648. [Google Scholar] [CrossRef]
- Nacer Khodja, A.; Mahlous, M.; Tahtat, D.; Benamer, S.; Larbi Youcef, S.; Chader, H.; Mouhoub, L.; Sedgelmaci, M.; Ammi, N.; Mansouri, M.B.; et al. Evaluation of healing activity of PVA/chitosan hydrogels on deep second degree burn: Pharmacological and toxicological tests. Burns 2013, 39, 98–104. [Google Scholar] [CrossRef]
- Yang, L.Q.; Lan, Y.Q.; Guo, H.; Cheng, L.Z.; Fan, J.Z.; Cai, X.; Zhang, L.M.; Chen, R.F.; Zhou, H.S. Ophthalmic drug-loaded N,O-carboxymethyl chitosan hydrogels: Synthesis, in vitro and in vivo evaluation. Acta Pharm. Sin. 2010, 31, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm. 2012, 437, 110–119. [Google Scholar] [CrossRef]
- Miguel, S.P.; Ribeiro, M.P.; Brancal, H.; Coutinho, P.; Correia, I.J. Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr. Polym. 2014, 111, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Tenci, M.; Rossi, S.; Bonferoni, M.C.; Sandri, G.; Boselli, C.; Di Lorenzo, A.; Daglia, M.; Icaro Cornaglia, A.; Gioglio, L.; Perotti, C.; et al. Particulate systems based on pectin/chitosan association for the delivery of manuka honey components and platelet lysate in chronic skin ulcers. Int. J. Pharm. 2016, 509, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Xu, D.-P.; Liu, Z.-M.; Du, Y.; Wang, X.-K. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Int. J. Mol. Med. 2016, 367–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Tong, L.; Jin, Y.; Jia, J.; Liu, Y.; Su, C.; Yu, S.; Li, X. A multifunctional in situforming hydrogel for wound healing. Wound Repair Regen. 2012, 20, 904–910. [Google Scholar] [CrossRef]
Retention Time (min) | Volatile Compounds Identified (mg/L) | [ ] mg/L ± SD |
---|---|---|
13.543 | 4-nonanol | 239.880 ± 0.000 |
28.288 | 2-phenylethanol | 4839.517 ± 2371.759 |
29.492 | b-ionone | 2362.144 ± 603.889 |
39.699 | ethyl hexadecanoate | 50,653.380 ± 5430.406 |
45.788 | (Z)-9-octadecenoic acid ethyl ester | 137,693.500 ± 15,294.920 |
45.994 | 2-hydroxy-1-(hydroxymethyl)-(Z)-9-octadecenoic acid ethyl ester | 5745.419 ± 505.733 |
51.527 | Ecosyl ester oleic acid | 1415.337 ± 160.063 |
56.231 | Hexadecanoic acid (palmitic) | 852,395.300 ± 32,492.960 |
61.736 | (Z)-9-octadecenoic acid | 3,803,073.000 ± 201,189.900 |
Carbon | Compound | Percentage (%) |
---|---|---|
- | Saturated Fatty Acids | - |
C8:0 | Caprylic Acid | 0.0045 |
C12:0 | Lauric acid | 0.012 |
C14:0 | Mystic acid | 0.071 |
C15:0 | Pentadecylic Acid | 0.0675 |
C17:0 | Margaric Acid | 0.086 |
C16:0 | Palmitic acid | 20.134 |
C18:0 | Stearic acid | 0.9465 |
C20:0 | Arachidic acid | 0.085 |
- | Monounsaturated | - |
C16:1 | Palmitic acid | 0.3635 |
C17:1 | Margaric acid | 0.0935 |
C18:1n9c+t | Elaidic acid and oleic acid | 75.43 |
C20:1 | Gondoic acid | 0.5745 |
- | Polyunsaturated | - |
C18:2n6c | Linoleic acid | 1.1955 |
C18:3n3 | Linolenic acid | 0.891 |
Materials | MIC (mg/mL) | |
---|---|---|
S. aureus ATCC 43300 | K. pneumoniae ATCC 13883 | |
CG | 10.00 ± 0.00 | 10.00 ± 0.00 |
OB | nd* | nd* |
CGB | 5.00 ± 0.00 | 3.75 ± 1.76 |
Material | [ ] mg/mL | β-carotene |
---|---|---|
Average ± SD (µmol/LBHA) | ||
CG | 10.0 | 0.232 ± 0.096 |
OB | 2.0 | 1.131 ± 0.355 |
CGB | 10.0 | 1.703 ± 0.236 |
Sample | [ ] mg/mL of Sample | Percent Inhibition (%) |
---|---|---|
CG | 30.0 | 15.53 ± 0.65 |
OB | 2.5 | 16.86 ± 1.00 |
CGB | 30.0 | 16.63 ± 0.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.O.G.; Lima, I.S.; Ribeiro, A.B.; Lobo, A.O.; Rizzo, M.S.; Osajima, J.A.; Estevinho, L.M.; Silva-Filho, E.C. Biocompatible Gels of Chitosan–Buriti Oil for Potential Wound Healing Applications. Materials 2020, 13, 1977. https://doi.org/10.3390/ma13081977
Ferreira MOG, Lima IS, Ribeiro AB, Lobo AO, Rizzo MS, Osajima JA, Estevinho LM, Silva-Filho EC. Biocompatible Gels of Chitosan–Buriti Oil for Potential Wound Healing Applications. Materials. 2020; 13(8):1977. https://doi.org/10.3390/ma13081977
Chicago/Turabian StyleFerreira, Maria Onaira Gonçalves, Idglan Sá Lima, Alessandra Braga Ribeiro, Anderson O. Lobo, Marcia S. Rizzo, Josy Anteveli Osajima, Leticia Miranda Estevinho, and Edson C. Silva-Filho. 2020. "Biocompatible Gels of Chitosan–Buriti Oil for Potential Wound Healing Applications" Materials 13, no. 8: 1977. https://doi.org/10.3390/ma13081977
APA StyleFerreira, M. O. G., Lima, I. S., Ribeiro, A. B., Lobo, A. O., Rizzo, M. S., Osajima, J. A., Estevinho, L. M., & Silva-Filho, E. C. (2020). Biocompatible Gels of Chitosan–Buriti Oil for Potential Wound Healing Applications. Materials, 13(8), 1977. https://doi.org/10.3390/ma13081977