CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 2018, 26, 3–12. [Google Scholar] [CrossRef] [Green Version]
- NREL Research Cell Record Efficiency Chart. Available online: https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.201812171.pdf (accessed on 20 March 2020).
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Birkmire, R.W.; Eser, E. Polycrystalline thin film solar cells: Present status and future potential. Annu. Rev. Mater. Sci. 1997, 27, 625–653. [Google Scholar] [CrossRef] [Green Version]
- Dharmadasa, I.M.; Alam, A.E.; Ojo, A.A.; Echendu, O.K. Scientific complications and controversies noted in the field of CdS/CdTe thin film solar cells and the way forward for further development. J. Mater. Sci. Mater. Electron. 2019, 30, 20330–20344. [Google Scholar] [CrossRef] [Green Version]
- Dobson, K.D.; Visoly-Fisher, I.; Hodes, G.; Cahen, D. Stability of CdTe/CdS thin-film solar cells. Sol. Energ. Mat. Sol. Cell 2000, 62, 295–325. [Google Scholar] [CrossRef]
- McCandless, B.E.; Buchanan, W.A.; Thompson, C.P.; Sriramagiri, G.; Lovelett, R.J.; Duenow, J.; Albin, D.; Jensen, S.; Colegrove, E.; Moseley, J.; et al. Overcoming carrier concentration limits in polycrystalline CdTe thin films with in situ doping. Sci. Rep. 2018, 8, 14519. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Farah, A.; Morel, D.; Ferekides, C.S. The effect of impurities on the doping and Voc of CdTe/CdS thin film solar cells. Thin Solid Films 2009, 517, 2365–2369. [Google Scholar] [CrossRef]
- Tamotsu, O.; Shigeyuki, I.; Satsuki, N.; Ryoji, H.; Kaoru, Y.; Yohei, K.; Akira, N.; Ryuichi, H. Effects of antimony doping in polycrystalline CdTe thin-film solar cells. Jpn. J. Appl. Phys. 2012, 51, 10NC12. [Google Scholar]
- Metzger, W.K.; Grover, S.; Lu, D.; Colegrove, E.; Moseley, J.; Perkins, C.L.; Li, X.; Mallick, R.; Zhang, W.; Malik, R.; et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 2019, 4, 837–845. [Google Scholar] [CrossRef]
- Paudel, N.R.; Yan, Y. Application of copper thiocyanate for high open-circuit voltages of CdTe solar cells. Prog. Photovolt. Res. Appl. 2016, 24, 94–101. [Google Scholar] [CrossRef]
- Kumara, G.R.R.A.; Konno, A.; Senadeera, G.K.R.; Jayaweera, P.V.V.; De Silva, D.B.R.A.; Tennakone, K. Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Sol. Energ. Mat. Sol. Cell 2001, 69, 195–199. [Google Scholar] [CrossRef]
- Lévy-Clément, C.; Tena-Zaera, R.; Ryan, M.A.; Katty, A.; Hodes, G. CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions. Adv. Mater. 2005, 17, 1512–1515. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, A.; Guo, L.; Grice, C.; Awni, R.A.; Saurav, S.; Li, L.; Yan, Y.; Yan, F. Solution-processed copper (i) thiocyanate (CuSCN) for highly efficient CdSe/CdTe thin-film solar cells. Prog. Photovolt. Res. Appl. 2019, 27, 665–672. [Google Scholar] [CrossRef]
- Ablekim, T.; Colegrove, E.; Metzger, W.K. Interface engineering for 25% CdTe solar cells. ACS Appl. Energy Mater. 2018, 1, 5135–5139. [Google Scholar] [CrossRef]
- Munshi, A.H.; Kephart, J.; Abbas, A.; Raguse, J.; Beaudry, J.; Barth, K.; Sites, J.; Walls, J.; Sampath, W. Polycrystalline CdSeTe/CdTe absorber cells with 28 mA/cm2 short-circuit current. IEEE J. Photovolt. 2018, 8, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Li, D.-B.; Song, Z.; Awni, R.A.; Bista, S.S.; Shrestha, N.; Grice, C.R.; Chen, L.; Liyanage, G.K.; Razooqi, M.A.; Phillips, A.B.; et al. Eliminating s-kink to maximize the performance of MgZnO/CdTe solar cells. ACS Appl. Energy Mater. 2019, 2, 2896–2903. [Google Scholar] [CrossRef]
- Ablekim, T.; Perkins, C.; Zheng, X.; Reich, C.; Swanson, D.; Colegrove, E.; Duenow, J.N.; Albin, D.; Nanayakkara, S.; Reese, M.O.; et al. Tailoring MgZnO/CdSeTe interfaces for photovoltaics. IEEE J. Photovolt. 2019, 9, 888–892. [Google Scholar] [CrossRef]
- Bittau, F.; Jagdale, S.; Potamialis, C.; Bowers, J.W.; Walls, J.M.; Munshi, A.H.; Barth, K.L.; Sampath, W.S. Degradation of Mg-doped zinc oxide buffer layers in thin film CdTe solar cells. Thin Solid Films 2019, 691, 137556. [Google Scholar] [CrossRef]
- Paudel, N.R.; Xiao, C.; Yan, Y. Close-space sublimation grown CdS window layers for CdS/CdTe thin-film solar cells. J. Mater. Sci. Mater. Electron. 2014, 25, 1991–1998. [Google Scholar] [CrossRef]
- Kuribayashi, K.; Matsumoto, H.; Uda, H.; Komatsu, Y.; Nakano, A.; Ikegami, S. Preparation of low resistance contact electrode in screen printed CdS/CdTe solar cell. Jpn. J. Appl. Phys. 1983, 22, 1828–1831. [Google Scholar] [CrossRef]
- Awni, R.A.; Li, D.-B.; Grice, C.R.; Song, Z.; Razooqi, M.A.; Phillips, A.B.; Bista, S.S.; Roland, P.J.; Alfadhili, F.K.; Ellingson, R.J.; et al. The effects of hydrogen iodide back surface treatment on CdTe solar cells. Solar RRL 2019, 3, 1800304. [Google Scholar] [CrossRef]
- Bätzner, D.L.; Wendt, R.; Romeo, A.; Zogg, H.; Tiwari, A.N. A study of the back contacts on CdTe/CdS solar cells. Thin Solid Films 2000, 361–362, 463–467. [Google Scholar] [CrossRef]
- Watthage, S.C.; Phillips, A.B.; Liyanage, G.K.; Song, Z.; Gibbs, J.M.; Alfadhili, F.K.; Alkhayat, R.B.; Ahangharnejhad, R.H.; Almutawah, Z.S.; Bhandari, K.P.; et al. Selective Cd removal from CdTe for high-efficiency Te back-contact formation. IEEE J. Photovolt. 2018, 8, 1125–1131. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Jaffe, J.E.; Kaspar, T.C.; Droubay, T.C.; Varga, T.; Bowden, M.E.; Exarhos, G.J. Electronic and defect structures of CuSCN. J. Phys. Chem. C 2010, 114, 9111–9117. [Google Scholar] [CrossRef]
- Hausmann, A.; Schallenberger, B.; Roll, R. A new model for ZnO:Cu undergoing dynamic Jahn-Teller coupling. Z. Phys. B 1980, 40, 1–7. [Google Scholar] [CrossRef]
- Kutty, T.R.N.; Raghu, N. Varistors based on polycrystalline ZnO:Cu. Appl. Phys. Lett. 1989, 54, 1796–1798. [Google Scholar] [CrossRef]
- Xu, C.X.; Sun, X.W.; Zhang, X.H.; Ke, L.; Chua, S.J. Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology 2004, 15, 856–861. [Google Scholar] [CrossRef]
- Biglari, B.; Samimi, M.; Hage-Ali, M.; Koebel, J.M.; Siffert, P. Effects of copper in high resistivity cadmium telluride. J. Cryst. Growth 1988, 89, 428–434. [Google Scholar] [CrossRef]
- Jones, E.D.; Stewart, N.M.; Mullin, J.B. The diffusion of copper in cadmium telluride. J. Cryst. Growth 1992, 117, 244–248. [Google Scholar] [CrossRef]
- Yan, Y.; Jones, K.; Zhou, J.; Wu, X.; Al-Jassim, M. Tem study of locations of Cu in CdTe solar cells. MRS Proc. 2011, 1012. [Google Scholar] [CrossRef]
- Demtsu, S.H.; Sites, J.R. Effect of back-contact barrier on thin-film CdTe solar cells. Thin Solid Films 2006, 510, 320–324. [Google Scholar] [CrossRef]
- Burgelman, M.; Verschraegen, J.; Degrave, S.; Nollet, P. Analysis of CdTe solar cells in relation to materials issues. Thin Solid Films 2005, 480–481, 392–398. [Google Scholar] [CrossRef]
- Awni, R.A.; Li, D.-B.; Song, Z.; Bista, S.S.; Razooqi, M.A.; Grice, C.R.; Chen, L.; Liyanage, G.K.; Li, C.; Phillips, A.B.; et al. Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells. Prog. Photovolt. Res. Appl. 2019, 27, 1115–1123. [Google Scholar] [CrossRef]
- Corwine, C.R.; Pudov, A.O.; Gloeckler, M.; Demtsu, S.H.; Sites, J.R. Copper inclusion and migration from the back contact in CdTe solar cells. Sol. Energy Mat. Sol. Cell 2004, 82, 481–489. [Google Scholar] [CrossRef]
- Li, J.V.; Johnston, S.W.; Li, X.; Albin, D.S.; Gessert, T.A.; Levi, D.H. Discussion of some “trap signatures” observed by admittance spectroscopy in CdTe thin-film solar cells. J. Appl. Phys. 2010, 108, 64501. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, N.; Chaudhary, R.; Kesari, J.P.; Patra, A.; Chand, S. Copper thiocyanate (CuSCN): An efficient solution-processable hole transporting layer in organic solar cells. J. Mater. Chem. C 2015, 3, 11886–11892. [Google Scholar] [CrossRef] [Green Version]
- Madhavan, V.E.; Zimmermann, I.; Roldán-Carmona, C.; Grancini, G.; Buffiere, M.; Belaidi, A.; Nazeeruddin, M.K. Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Lett. 2016, 1, 1112–1117. [Google Scholar] [CrossRef]
Devices | Cu Source | Solvent | CuSCN Deposition | Activation Procedure |
---|---|---|---|---|
CdTe-Cu | Cu metal | N/A | TE, 3 nm | 200 °C for 20 min |
CuSCN-140 | CuSCN | NH | SP, 10 mg/mL-6000 rpm | 140 °C for 0 min |
CuSCN-160 | CuSCN | NH | SP, 10 mg/mL-6000 rpm | 160 °C for 0 min |
CuSCN-180 | CuSCN | NH | SP, 10 mg/mL-6000 rpm | 180 °C for 0 min |
2 mg/mL-6000 rpm | CuSCN | NH | SP, 2 mg/mL-6000 rpm | 160 °C for 0 min |
2 mg/mL-2000 rpm | CuSCN | NH | SP, 2 mg/mL-2000 rpm | 160 °C for 0 min |
8 mg/mL-6000 rpm | CuSCN | NH | SP, 10 mg/mL-6000 rpm | 160 °C for 0 min |
8 mg/mL-2000 rpm | CuSCN | NH | SP, 10 mg/mL-2000 rpm | 160 °C for 0 min |
diethyl sulfide | CuSCN | DS | SP, 10 mg/mL-2000 rpm | 160 °C for 0 min |
Samples | VOC (V) | JSC (mA/cm2) | FF (%) | Efficiency (%) | RS (Ω cm2) | RSH (Ω cm2) |
---|---|---|---|---|---|---|
CdTe-Cu | 0.786 | 24.8 | 48.7 | 9.49 | 9.78 | 239 |
CuSCN-140 | 0.836 | 25.9 | 69.1 | 15.0 | 2.95 | 734 |
CuSCN-160 | 0.850 | 26.2 | 74.0 | 16.5 | 2.70 | 2580 |
CuSCN-180 | 0.851 | 26.1 | 71.4 | 15.9 | 2.45 | 1140 |
CuSCN Deposition | VOC (V) | JSC (mA/cm2) | FF (%) | Efficiency (%) | RS (Ω cm2) | RSH (Ω cm2) |
---|---|---|---|---|---|---|
2 mg/mL-6000 rpm | 0.830 | 24.4 | 63.3 | 12.8 | 4.01 | 381 |
2 mg/mL-2000 rpm | 0.849 | 26.1 | 74.1 | 16.4 | 3.58 | 2070 |
10 mg/ml-6000 rpm | 0.857 | 26.2 | 74.5 | 16.7 | 3.43 | 1610 |
10 mg/ml-2000 rpm | 0.862 | 25.3 | 70.6 | 15.4 | 4.17 | 1350 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-B.; Song, Z.; Bista, S.S.; Alfadhili, F.K.; Awni, R.A.; Shrestha, N.; Rhiannon, D.; Phillips, A.B.; Heben, M.J.; Ellingson, R.J.; et al. CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells. Materials 2020, 13, 1991. https://doi.org/10.3390/ma13081991
Li D-B, Song Z, Bista SS, Alfadhili FK, Awni RA, Shrestha N, Rhiannon D, Phillips AB, Heben MJ, Ellingson RJ, et al. CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells. Materials. 2020; 13(8):1991. https://doi.org/10.3390/ma13081991
Chicago/Turabian StyleLi, Deng-Bing, Zhaoning Song, Sandip S. Bista, Fadhil K. Alfadhili, Rasha A. Awni, Niraj Shrestha, DeMilt Rhiannon, Adam B. Phillips, Michael J. Heben, Randy J. Ellingson, and et al. 2020. "CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells" Materials 13, no. 8: 1991. https://doi.org/10.3390/ma13081991
APA StyleLi, D. -B., Song, Z., Bista, S. S., Alfadhili, F. K., Awni, R. A., Shrestha, N., Rhiannon, D., Phillips, A. B., Heben, M. J., Ellingson, R. J., Yan, F., & Yan, Y. (2020). CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells. Materials, 13(8), 1991. https://doi.org/10.3390/ma13081991