Investigations of the Deuterium Permeability of As-Deposited and Oxidized Ti2AlN Coatings
Abstract
:1. Introduction
2. Experimental Details
2.1. Deposition of Ti2AlN
2.2. Oxidation Procedure and Analysis
2.3. Deuterium Permeation Setup
3. Results and Discussion
3.1. Oxidation
3.2. Hydrogen Permeation
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Evans, M.-H. An updated review: White etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater. Sci. Technol. 2016, 32, 1133–1169. [Google Scholar] [CrossRef]
- Farle, A.-S.; Kwakernaak, C.; van der Zwaag, S.; Sloof, W.G. A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage. J. Eur. Ceram. Soc. 2015, 35, 37–45. [Google Scholar] [CrossRef]
- Song, G.M.; Schnabel, V.; Kwakernaak, C.; van der Zwaag, S.; Schneider, J.M.; Sloof, W.G. High temperature oxidation behaviour of Ti2AlC ceramic at 1200C. Mater. High Temp. 2012, 29, 205–209. [Google Scholar] [CrossRef]
- Hultman, L. Thermal stability of nitride thin films. Vacuum 2000, 57, 1–30. [Google Scholar] [CrossRef]
- Colonna, F.; Elsässer, C. First principles DFT study of interstitial hydrogen and oxygen atoms in the MAX phase Ti2AlN. RSC Adv 2017, 7, 37852–37857. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Grosse, M.K.; Trtik, P.; Steinbrück, M.; Stüber, M.; Seifert, H.J. H2 Permeation Behavior Of Cr2AlC And Ti2AlC MAX Phase Coated Zircaloy-4 By Neutron Radiography. Acta Polytech. 2018, 58, 69. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M.W. The Mn+1AXn phases: A new class of solids. Prog. Solid State Chem. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Smialek, J.L. Oxidation of Al2O3 Scale-Forming MAX Phases in Turbine Environments. Met. Mat Trans A 2017, 89, 334. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, H.; Chai, J.; Pan, J.; Seng, H.L.; Goh, G.T.W.; Wong, L.M.; Sullivan, M.B.; Wang, S.J. Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 2016, 368, 88–96. [Google Scholar] [CrossRef]
- Sokol, M.; Natu, V.; Kota, S.; Barsoum, M.W. On the Chemical Diversity of the MAX Phases. Trends Chem. 2019, in press. [Google Scholar] [CrossRef]
- Laimer, J.; Fink, M.; Mitterer, C.; Störi, H. Plasma CVD of alumina—Unsolved problems. Vacuum 2005, 80, 141–145. [Google Scholar] [CrossRef]
- Gavrilov, N.V.; Kamenetskikh, A.S.; Tretnikov, P.V.; Chukin, A.V. High-rate low-temperature PVD of thick 10 μm α-alumina coatings. J. Phys. Conf. Ser. 2019, 1393, 12082. [Google Scholar] [CrossRef]
- Kyrylov, O.; Kurapov, D.; Schneider, J.M. Effect of ion irradiation during deposition on the structure of alumina thin films grown by plasma assisted chemical vapour deposition. Appl. Phys. A 2005, 80, 1657–1660. [Google Scholar] [CrossRef]
- Checchetto, R.; Bonelli, M.; Gratton, L.M.; Miotello, A.; Sabbioni, A.; Guzman, L.; Horino, Y.; Benamati, G. Analysis of the hydrogen permeation properties of TiN-TiC bilayers deposited on martensitic stainless steel. Surf. Coat. Technol. 1996, 83, 40–44. [Google Scholar] [CrossRef]
- Gröner, L.; Kirste, L.; Oeser, S.; Fromm, A.; Wirth, M.; Meyer, F.; Burmeister, F.; Eberl, C. Microstructural investigations of polycrystalline Ti2AlN prepared by physical vapor deposition of Ti-AlN multilayers. Surf. Coat. Technol. 2018, 166–171. [Google Scholar] [CrossRef]
- Levchuk, D.; Bolt, H.; Döbeli, M.; Eggenberger, S.; Widrig, B.; Ramm, J. Al–Cr–O thin films as an efficient hydrogen barrier. Surf. Coat. Technol. 2008, 202, 5043–5047. [Google Scholar] [CrossRef]
- Chikada, T.; Suzuki, A.; Yao, Z.; Levchuk, D.; Maier, H.; Terai, T.; Muroga, T. Deuterium permeation behavior of erbium oxide coating on austenitic, ferritic, and ferritic/martensitic steels. Fusion Eng. Des. 2009, 84, 590–592. [Google Scholar] [CrossRef] [Green Version]
- Frank, R.C.; Swets, D.E.; Fry, D.L. Mass Spectrometer Measurements of the Diffusion Coefficient of Hydrogen in Steel in the Temperature Range of 25–90 °C. J. Appl. Phys. 1958, 29, 892–898. [Google Scholar] [CrossRef]
- Gorman, J.K.; Nardella, W.R. Hydrogen Permeation through Metals. Vacuum 1962, 12, 19–24. [Google Scholar] [CrossRef]
- Levchuk, D.; Koch, F.; Maier, H.; Bolt, H. Gas-driven Deuterium Permeation through Al2O3 Coated Samples. Phys. Scr. 2004, T108, 119–123. [Google Scholar] [CrossRef]
- Tang, C.; Klimenkov, M.; Jaentsch, U.; Leiste, H.; Rinke, M.; Ulrich, S.; Steinbrück, M.; Seifert, H.J.; Stueber, M. Synthesis and characterization of Ti2AlC coatings by magnetron sputtering from three elemental targets and ex-situ annealing. Surf. Coat. Technol. 2017, 309, 445–455. [Google Scholar] [CrossRef]
- Ines, D. Raman Spectroscopy Analysis of CVD Hard Coatings Deposited in the TiC1-xNx, TiBxCyNz and Ti-B-N System. Ph.D. Thesis, Eberhard Karls Universität Tübingen, Tübingen, Germany, 2011. [Google Scholar]
- Wang, Z.; Li, X.; Li, W.; Ke, P.; Wang, A. Comparative study on oxidation behavior of Ti2AlN coatings in air and pure steam. Ceram. Int. 2019, 45, 9260–9270. [Google Scholar] [CrossRef]
- Aminzadeh, A. Excitation Frequency Dependence and Fluorescence in the Raman Spectra of Al2O3. Appl. Spectrosc. 1997, 51, 817–819. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhou, Y.C. Oxidation behavior of Ti3AlC2 powders in flowing air. J. Mater. Chem. 2002, 12, 2781–2785. [Google Scholar] [CrossRef]
- Luo, M.-F.; Fang, P.; He, M.; Xie, Y.-L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J. Mol. Catal. A Chem. 2005, 239, 243–248. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, H.; Pan, J.; Chai, J.; Wong, L.M.; Sullivan, M.B.; Wang, S.J. Origin of Al Deficient Ti2AlN and Pathways of Vacancy-Assisted Diffusion. J. Phys. Chem. C 2015, 119, 16606–16613. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gröner, L.; Mengis, L.; Galetz, M.; Kirste, L.; Daum, P.; Wirth, M.; Meyer, F.; Fromm, A.; Blug, B.; Burmeister, F. Investigations of the Deuterium Permeability of As-Deposited and Oxidized Ti2AlN Coatings. Materials 2020, 13, 2085. https://doi.org/10.3390/ma13092085
Gröner L, Mengis L, Galetz M, Kirste L, Daum P, Wirth M, Meyer F, Fromm A, Blug B, Burmeister F. Investigations of the Deuterium Permeability of As-Deposited and Oxidized Ti2AlN Coatings. Materials. 2020; 13(9):2085. https://doi.org/10.3390/ma13092085
Chicago/Turabian StyleGröner, Lukas, Lukas Mengis, Mathias Galetz, Lutz Kirste, Philipp Daum, Marco Wirth, Frank Meyer, Alexander Fromm, Bernhard Blug, and Frank Burmeister. 2020. "Investigations of the Deuterium Permeability of As-Deposited and Oxidized Ti2AlN Coatings" Materials 13, no. 9: 2085. https://doi.org/10.3390/ma13092085
APA StyleGröner, L., Mengis, L., Galetz, M., Kirste, L., Daum, P., Wirth, M., Meyer, F., Fromm, A., Blug, B., & Burmeister, F. (2020). Investigations of the Deuterium Permeability of As-Deposited and Oxidized Ti2AlN Coatings. Materials, 13(9), 2085. https://doi.org/10.3390/ma13092085