Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Core Liquid and Shell Liquids Used in Coaxial Nozzle Electrospraying
2.3. Production of n-Hexadecane/PCL Microcapsules by Coaxial Nozzle Electrospraying
2.4. Morphological Characterization of Electrosprayed mPCM
2.5. Thermal Analyses of Electrosprayed mPCM
3. Results and Discussion
3.1. Size and Morphology of Electro-Sprayed mPCM
3.2. Surface State of the Electrosprayed mPCM
3.3. Phase Change Properties of Electrosprayed mPCM
3.4. Thermal Stability of Electrosprayed mPCM
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Safari, A.; Saidur, R.; Sulaiman, F.A.; Xu, Y.; Dong, J. A review on supercooling of Phase Change Materials in thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, 905–919. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwole, P.-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Qiu, X.; Song, G.; Chu, X.; Li, X.; Tang, G. Microencapsulated n-alkane with p(n-butyl methacrylate-co-methacrylic acid) shell as phase change materials for thermal energy storage. SoEn 2013, 91, 212–220. [Google Scholar] [CrossRef]
- Qiu, X.; Lu, L.; Wang, J.; Tang, G.; Song, G. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell. Thermochim. Acta 2015, 620, 10–17. [Google Scholar] [CrossRef]
- Döğüşcü, D.K.; Kızıl, Ç.; Biçer, A.; Sarı, A.; Alkan, C. Microencapsulated n -alkane eutectics in polystyrene for solar thermal applications. SoEn 2018, 160, 32–42. [Google Scholar] [CrossRef]
- Salaün, F.; Devaux, E.; Bourbigot, S.; Rumeau, P. Development of Phase Change Materials in Clothing Part I: Formulation of Microencapsulated Phase Change. Text. Res. J. 2009, 80, 195–205. [Google Scholar] [CrossRef]
- Cao, F.; Yang, B. Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure. ApEn 2014, 113, 1512–1518. [Google Scholar] [CrossRef]
- Qiu, X.; Li, W.; Song, G.; Chu, X.; Tang, G. Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy 2012, 46, 188–199. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.; Liu, L.; Fang, G. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. Energy Build. 2017, 144, 276–294. [Google Scholar] [CrossRef]
- Wang, T.; Wang, S.; Geng, L.; Fang, Y. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network. ApEn 2016, 179, 601–608. [Google Scholar] [CrossRef]
- Salaün, F.; Devaux, E.; Bourbigot, S.; Rumeau, P. Preparation of multinuclear microparticles using a polymerization in emulsion process. J. Appl. Polym. Sci. 2008, 107, 2444–2452. [Google Scholar] [CrossRef]
- Mondal, S. Phase change materials for smart textiles—An overview. Appl. Therm. Eng. 2008, 28, 1536–1550. [Google Scholar] [CrossRef]
- Onder, E.; Sarier, N.; Cimen, E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim. Acta 2008, 467, 63–72. [Google Scholar] [CrossRef]
- Shin, Y.; Yoo, D.-I.; Son, K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J. Appl. Polym. Sci. 2005, 96, 2005–2010. [Google Scholar] [CrossRef]
- Lin, Y.; Jia, Y.; Alva, G.; Fang, G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew. Sustain. Energy Rev. 2018, 82, 2730–2742. [Google Scholar] [CrossRef]
- Xia, M.; Yuan, Y.; Zhao, X.; Cao, X.; Tang, Z. Cold storage condensation heat recovery system with a novel composite phase change material. ApEn 2016, 175, 259–268. [Google Scholar] [CrossRef]
- Jia, J.; Lee, W.L. Experimental investigations on using phase change material for performance improvement of storage-enhanced heat recovery room air-conditioner. Energy 2015, 93, 1394–1403. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, X.-S. Experimental research on a double-layer radiant floor system with phase change material under heating mode. Appl. Therm. Eng. 2016, 96, 600–606. [Google Scholar] [CrossRef]
- Johra, H.; Heiselberg, P. Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review. Renew. Sustain. Energy Rev. 2017, 69, 19–32. [Google Scholar] [CrossRef]
- Sharma, R.K.; Ganesan, P.; Tyagi, V.V.; Metselaar, H.S.C.; Sandaran, S.C. Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 2015, 95, 193–228. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Qiu, F.; Yang, W.; Zhao, X. Applications of solar water heating system with phase change material. Renew. Sustain. Energy Rev. 2015, 52, 645–652. [Google Scholar] [CrossRef]
- Fukui, Y.; Maruyama, T.; Iwamatsu, Y.; Fujii, A.; Tanaka, T.; Ohmukai, Y.; Matsuyama, H. Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids Surf. Physicochem. Eng. Asp. 2010, 370, 28–34. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, J.; Si, T.; Xu, R.X. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev. Med. Devices 2012, 9, 595–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, N.; Dargaville, T.R.; Woodruff, M.A. Electrospraying of polymers with therapeutic molecules: State of the art. Prog. Polym. Sci. 2012, 37, 1510–1551. [Google Scholar] [CrossRef] [Green Version]
- Enayati, M.; Chang, M.-W.; Bragman, F.; Edirisinghe, M.; Stride, E. Electrohydrodynamic preparation of particles, capsules and bubbles for biomedical engineering applications. Colloids Surf. Physicochem. Eng. Asp. 2011, 382, 154–164. [Google Scholar] [CrossRef]
- Zhang, S.; Campagne, C.; Salaün, F. Influence of Solvent Selection in the Electrospraying Process of Polycaprolactone. Appl. Sci. 2019, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Mascaraque, L.G.; Tordera, F.; Fabra, M.J.; Martínez-Sanz, M.; Lopez-Rubio, A. Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Ghayempour, S.; Mortazavi, S.M. Fabrication of micro–nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. J. Electrost. 2013, 71, 717–727. [Google Scholar] [CrossRef]
- Salaün, F.; Vroman, I. Influence of core materials on thermal properties of melamine–formaldehyde microcapsules. Eur. Polym. J. 2008, 44, 849–860. [Google Scholar] [CrossRef]
- Salaün, F.; Devaux, E.; Bourbigot, S.; Rumeau, P. Influence of the solvent on the microencapsulation of an hydrated salt. Carbohydr. Polym. 2010, 79, 964–974. [Google Scholar] [CrossRef]
- Fredi, G.; Dire, S.; Callone, E.; Ceccato, R.; Mondadori, F.; Pegoretti, A. Docosane-Organosilica Microcapsules for Structural Composites with Thermal Energy Storage/Release Capability. Materials (Basel) 2019, 12, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, J.C.; Ferri, A.; Giraud, S.; Jinping, G.; Salaun, F. Chitosan(-)Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. Int. J. Mol. Sci. 2018, 19, 2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, J.C.; Giraud, S.; Ferri, A.; Mossotti, R.; Guan, J.; Salaun, F. Influence of process parameters on microcapsule formation from chitosan-Type B gelatin complex coacervates. Carbohydr. Polym. 2018, 198, 281–293. [Google Scholar] [CrossRef]
- Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 2010. [Google Scholar] [CrossRef]
- Cho, J.-S.; Kwon, A.; Cho, C.-G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid. Polym. Sci. 2014, 280, 260–266. [Google Scholar] [CrossRef]
- Su, W.; Darkwa, J.; Kokogiannakis, G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 2015, 48, 373–391. [Google Scholar] [CrossRef]
- Zhang, S.; Campagne, C.; Salaün, F. Preparation of Electrosprayed Poly(caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. Coatings 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhao, Y.; Song, Y.; Jiang, L. One-step multicomponent encapsulation by compound-fluidic electrospray. J. Am. Chem. Soc. 2008, 130, 7800–7801. [Google Scholar] [CrossRef]
- Labbaf, S.; Ghanbar, H.; Stride, E.; Edirisinghe, M. Preparation of multilayered polymeric structures using a novel four-needle coaxial electrohydrodynamic device. Macromol. Rapid Commun. 2014, 35, 618–623. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Mei, F.; Bai, M.Y.; Zhao, S.; Chen, D.R. Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J. Control. Release 2010, 145, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Liu, Z.-P.; Yu, D.-G.; Zhang, S.-P.; Bligh, S.W.A.; Zhao, N. Electrosprayed core-shell nanoparticles of PVP and shellac for furnishing biphasic controlled release of ferulic acid. Colloid. Polym. Sci. 2014, 292, 2089–2096. [Google Scholar] [CrossRef]
- Kim, W.; Kim, S.S. Multishell encapsulation using a triple coaxial electrospray system. Anal. Chem. 2010, 82, 4644–4647. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, Z.C.; Ding, Q.; Choi, J.J.; Ahmad, Z.; Chang, M.W.; Li, J.S. Tri-Needle Coaxial Electrospray Engineering of Magnetic Polymer Yolk-Shell Particles Possessing Dual-Imaging Modality, Multiagent Compartments, and Trigger Release Potential. ACS Appl. Mater Interfaces 2017, 9, 21485–21495. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, Y.; Liu, W. Electrospun polyethylene glycol/cellulose acetate phase change fibers with core–sheath structure for thermal energy storage. Renew. Energy 2013, 60, 222–225. [Google Scholar] [CrossRef]
- Hu, W.; Yu, X. Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers. RSC Adv. 2012, 2. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Huang, Y. Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Sol. Energy Mater. Sol. Cells 2008, 92, 1382–1387. [Google Scholar] [CrossRef]
- Moghaddam, M.K.; Mortazavi, S.M.; Khayamian, T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method. J. Electrost. 2015, 73, 56–64. [Google Scholar] [CrossRef]
- Moghaddam, M.K.; Mortazavi, S.M.; Khaymian, T. Micro/nano-encapsulation of a phase change material by coaxial electrospray method. Iran. Polym. J. 2015, 24, 759–774. [Google Scholar] [CrossRef]
- Kamali Moghaddam, M.; Mortazavi, S.M. Preparation, characterisation and thermal properties of calcium alginate/n-nonadecane microcapsules fabricated by electro-coextrusion for thermo-regulating textiles. J. Microencapsul. 2015, 32, 737–744. [Google Scholar] [CrossRef]
- Yuan, W.-J.; Wang, Y.-P.; Li, W.; Wang, J.-P.; Zhang, X.-X.; Zhang, Y.-K. Microencapsulation and characterization of polyamic acid microcapsules containing n-octadecane via electrospraying method. Mater. Express 2015, 5, 480–488. [Google Scholar] [CrossRef]
- Zhang, S.; Campagne, C.; Salaün, F. Preparation of n-Alkane/Polycaprolactone Phase-Change Microcapsules via Single Nozzle Electro-Spraying: Characterization on Their Formation, Structures and Properties. Appl. Sci. 2020, 10, 561. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.K.; Jeong, U.; Cho, E.C. Production of uniform-sized polymer core-shell microcapsules by coaxial electrospraying. Langmuir 2008, 24, 2446–2451. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Dong, Z.; Arifin, D.Y.; Hu, Y.; Wang, C.H. Core/shell microspheres via coaxial electrohydrodynamic atomization for sequential and parallel release of drugs. J. Biomed. Mater. Res. A 2010, 95, 709–716. [Google Scholar] [CrossRef]
- Davoodi, P.; Feng, F.; Xu, Q.; Yan, W.C.; Tong, Y.W.; Srinivasan, M.P.; Sharma, V.K.; Wang, C.H. Coaxial electrohydrodynamic atomization: Microparticles for drug delivery applications. J. Control. Release 2015, 205, 70–82. [Google Scholar] [CrossRef]
- Gañán-Calvo, A.M.; López-Herrera, J.M.; Herrada, M.A.; Ramos, A.; Montanero, J.M. Review on the physics of electrospray: From electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J. Aerosol Sci. 2018, 125, 32–56. [Google Scholar] [CrossRef]
- Fu, D.; Su, Y.; Xie, B.; Zhu, H.; Liu, G.; Wang, D. Phase change materials of n-alkane-containing microcapsules: Observation of coexistence of ordered and rotator phases. Phys. Chem. Chem. Phys. 2011, 13, 2021–2026. [Google Scholar] [CrossRef]
- Illeková, E.; Miklošovičová, M.; Šauša, O.; Berek, D. Solidification and melting of cetane confined in the nanopores of silica gel. J. Therm. Anal. Calorim. 2011, 108, 497–503. [Google Scholar] [CrossRef]
- Valo, H.; Peltonen, L.; Vehvilainen, S.; Karjalainen, M.; Kostiainen, R.; Laaksonen, T.; Hirvonen, J. Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(L-lactic acid) nanoparticles. Small 2009, 5, 1791–1798. [Google Scholar] [CrossRef]
- Mochane, M.J.; Luyt, A.S. Preparation and properties of polystyrene encapsulated paraffin wax as possible phase change material in a polypropylene matrix. Thermochim. Acta 2012, 544, 63–70. [Google Scholar] [CrossRef]
- Jenquin, M.R.; McGinity, J.W. Characterization of acrylic resin matrix films and mechanisms of drug-polymer interactions. Int. J. Pharm. 1994, 101, 23–34. [Google Scholar] [CrossRef]
- Dubernet, C. Thermoanalysis of microspheres. Thermochim. Acta 1995, 248, 259–269. [Google Scholar] [CrossRef]
Sample Label a | PCL Concentration (w/v %) | Shell Flow Rate (mL/h) | Core Flow Rate (mL/h) |
---|---|---|---|
n-hexadecane00-PCL100-5 | 5 | 1.00 | 0.00 |
n-hexadecane30-PCL70-5 | 5 | 1.00 | 0.03 |
n-hexadecane50-PCL50-5 | 5 | 1.00 | 0.07 |
n-hexadecane70-PCL30-5 | 5 | 1.00 | 0.17 |
n-hexadecane00-PCL100-10 | 10 | 1.00 | 0.00 |
n-hexadecane30-PCL70-10 | 10 | 1.00 | 0.06 |
n-hexadecane50-PCL50-10 | 10 | 1.00 | 0.14 |
n-hexadecane70-PCL30-10 | 10 | 1.00 | 0.33 |
Shell Liquid Concentration | n-Hexadecane00-PCL100 | n-Hexadecane30-PCL70 | n-Hexadecane50-PCL50 | n-Hexadecane70-PCL30 |
---|---|---|---|---|
5 wt % | 7.8±0.9 µm | 21.8±7.8 µm | 22.1±6.2 µm | 14.8±2.8 µm |
10 wt % | 8.4±0.8 µm | 13.0±3.9 µm | 21.6±3.2 µm | 19.4±4.3 µm |
Sample Label | Latent Heat (J/g) | Tonset (°C) | LC (%) | EE (%) | Xc(th) (%) | Xc(m) (%) | |||
---|---|---|---|---|---|---|---|---|---|
n-hexadecane | heating | 199.4 | - | 17.9 | - | - | - | - | - |
cooling | 195.9 | - | 16.2 | - | - | - | - | - | |
n-hexadecane00-PCL100-5 | heating | - | 61.6 | - | 55.6 | - | - | 44.2 | - |
cooling | - | 59.1 | - | 41.4 | - | - | - | - | |
n-hexadecane30-PCL70-5 | heating | 52.2 | 56.9 | 17.5 | 54.7 | 26.2 | 87.3 | 58.5 | 55.5 |
cooling | 51.1 | 56.7 | 15.9 | 41.0 | - | - | - | - | |
n-hexadecane50-PCL50-5 | heating | 92.0 | 35.0 | 17.6 | 54.8 | 46.2 | 92.5 | 50.4 | 46.8 |
cooling | 90.4 | 35.7 | 15.9 | 41.0 | - | - | - | - | |
n-hexadecane70-PCL30-5 | heating | 115.5 | 15.8 | 17.6 | 54.9 | 58.0 | 82.9 | 37.9 | 27.1 |
cooling | 112.9 | 18.2 | 15.9 | 40.6 | - | - | - | - | |
n-hexadecane00-PCL100-10 | heating | - | 58.0 | - | 55.6 | - | - | 41.6 | - |
cooling | - | 56.0 | - | 41.8 | - | - | - | - | |
n-hexadecane30-PCL70-10 | heating | 46.5 | 49.7 | 17.8 | 54.7 | 23.4 | 77.9 | 50.9 | 46.5 |
cooling | 45.5 | 50.0 | 16.0 | 41.9 | - | - | - | - | |
n-hexadecane50-PCL50-10 | heating | 98.3 | 32.7 | 17.7 | 54.8 | 49.4 | 98.7 | 46.9 | 46.1 |
cooling | 97.5 | 33.2 | 16.0 | 41.8 | - | - | - | - | |
n-hexadecane70-PCL30-10 | heating | 134.1 | 20.5 | 17.7 | 54.9 | 67.4 | 96.3 | 49.0 | 45.1 |
cooling | 130.3 | 21.1 | 16.0 | 42.0 | - | - | - | - |
Sample | Initial Degradation Temperature – T5% (°C) | First Step | Second Step | ||||
---|---|---|---|---|---|---|---|
Weight Loss (100–350 °C ) (%) | Maximum Degradation Temperature (°C) | Maximum Degradation Rate (%/°C) | Weight Loss (350–500°C) (%) | Maximum Degradation Temperature (°C) | Maximum Degradation Rate (%/°C) | ||
n-hexadecane00-PCL100-5 | 366.8 | 3.4 | - | - | 96.1 | 412.7 | 2.1 |
n-hexadecane00-PCL100-10 | 364.7 | 3.6 | - | - | 95.8 | 413.8 | 2.2 |
n-hexadecane | 149.3 | 99.3 | 247.3 | 2.1 | - | - | - |
n-hexadecane30-PCL70-5 | 161.5 | 24.0 | 177.7 | 0.2 | 75.5 | 416.3 | 1.9 |
n-hexadecane50-PCL50-5 | 168.5 | 49.3 | 227.0 | 0.6 | 50.0 | 414.7 | 1.2 |
n-hexadecane70-PCL30-5 | 145.5 | 64.4 | 218.3 | 1.0 | 34.8 | 415.0 | 0.8 |
n-hexadecane30-PCL70-10 | 170.0 | 23.1 | 180.5 | 0.2 | 76.4 | 415.7 | 1.8 |
n-hexadecane50-PCL50-10 | 166.3 | 51.8 | 231.1 | 0.8 | 47.6 | 416.5 | 1.2 |
n-hexadecane70-PCL30-10 | 163.3 | 69.3 | 236.8 | 1.2 | 30.1 | 416.5 | 0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, Y.; Campagne, C.; Salaün, F. Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties. Materials 2020, 13, 2205. https://doi.org/10.3390/ma13092205
Zhang S, Chen Y, Campagne C, Salaün F. Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties. Materials. 2020; 13(9):2205. https://doi.org/10.3390/ma13092205
Chicago/Turabian StyleZhang, Shengchang, Yuan Chen, Christine Campagne, and Fabien Salaün. 2020. "Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties" Materials 13, no. 9: 2205. https://doi.org/10.3390/ma13092205
APA StyleZhang, S., Chen, Y., Campagne, C., & Salaün, F. (2020). Influence of a Coaxial Electrospraying System on the n-Hexadecane/Polycaprolactone Phase Change Microcapsules Properties. Materials, 13(9), 2205. https://doi.org/10.3390/ma13092205