Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Samples Preparation
2.3. Measurements of Moldings Shrinkage
2.4. Measurements of Density
2.5. Measurements of the Melting Behavior
2.6. Measurements of the Tensile Properties
2.7. Measurements of Impact Strength
3. Results
3.1. Shrinkage
3.2. Crystalline Structure
3.3. Mechanical Properties
4. Conclusions
5. Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baur, E.; Osswald, T.A.; Rudolph, N. Plastics Handbook; Hanser Publications: Munich, Germany, 2019; pp. 61–69. [Google Scholar]
- Azaman, M.; Sapuan, S.; Sulaiman, S.; Zainudin, E.; Khalina, A. Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Mater. Des. 2013, 52, 1018–1026. [Google Scholar] [CrossRef]
- Heidari, B.S.; Moghaddam, A.H.; Davachi, S.M.; Khamani, S.; Alihosseini, A. Optimization of process parameters in plastic injection molding for minimizing the volumetric shrinkage and warpage using radial basis function (RBF) coupled with the k-fold cross validation technique. J. Polym. Eng. 2019, 39, 481–492. [Google Scholar] [CrossRef]
- Bensingh, R.J.; Boopathy, S.R.; Jebaraj, C. Minimization of variation in volumetric shrinkage and deflection on injection molding of Bi-aspheric lens using numerical simulation. J. Mech. Sci. Technol. 2016, 30, 5143–5152. [Google Scholar] [CrossRef]
- Zawistowski, H.; Zięba, S. Ustawianie Procesu Wtryskiwania Tworzyw Termoplastycznych; Wydawnictwo Poradników i Książek Technicznych: Warsaw, Poland, 2015; pp. 33–36. [Google Scholar]
- Kowalska, B. Injection molding contraction and p-v-T relation. Polimery 2007, 52, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Rojo, E.; Fernández, M.; Muñoz, M.E.; Santamaria, A. Relation between PVT measurements and linear viscosity in isotactic and syndiotactic polypropylenes. Polymer 2006, 47, 7853–7858. [Google Scholar] [CrossRef]
- Kowalska, B. Study on crystallization of polymers during the injection molding. Polimery 2007, 52, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Dudić, D.; Djoković, V.; Kostoski, D. The high temperature secondary crystallisation of aged isotactic polypropylene. Polym. Test. 2004, 23, 621–627. [Google Scholar] [CrossRef]
- Barczewski, M.; Dudziec, B.; Dobrzyńska-Mizera, M.; Sterzynski, T. Synthesis and Influence of Sodium Benzoate Silsesquioxane Based Nucleating Agent on Thermal and Mechanical Properties of Isotactic Polypropylene. J. Macromol. Sci. Part A 2014, 51, 907–913. [Google Scholar] [CrossRef]
- Sterzyński, T.; Øysaed, H.; Øysæd, H. Structure modification of isotactic polypropylene by bi-component nucleating systems. Polym. Eng. Sci. 2004, 44, 352–361. [Google Scholar] [CrossRef]
- Sterzyński, T.; Lambla, M.; Georgi, F.; Thomas, M. Studies of the Trans-Quinacridone Nucleation of Poly-(ethylene-b-propylene). Int. Polym. Process. 1997, 12, 64–71. [Google Scholar] [CrossRef]
- Garbarczyk, J.; Paukszta, D. Influence of additives on the structure and properties of polymers. Colloid Polym. Sci. 1985, 263, 985–990. [Google Scholar] [CrossRef]
- Paukszta, D.; Garbarczyk, J. Crystallisation of isotactic polypropylene with β-nucleating agents under elevated pressure. Fibres Text. East. Eur. 2003, 11, 50–53. [Google Scholar]
- Nakamura, K.; Shimizu, S.; Umemoto, S.; Thierry, A.; Lotz, B.; Okui, N. Temperature Dependence of Crystal Growth Rate for α and β Forms of Isotactic Polypropylene. Polym. J. 2008, 40, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Kosciuszko, A.; Czyzewski, P.; Wajer, Ł.; Osciak, A.; Bielinski, M. Properties of polypropylene composites filled with microsilica waste. Polimery 2020, 65, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.; Sohn, J.S.; Kweon, B.C.; Cha, S.W. Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites. Materials 2019, 12, 764. [Google Scholar] [CrossRef] [Green Version]
- Mulle, M.; Wafai, H.; Yudhanto, A.; Lubineau, G.; Yaldiz, R.; Schijve, W.; Verghese, N. Influence of process-induced shrinkage and annealing on the thermomechanical behavior of glass fiber-reinforced polypropylene. Compos. Sci. Technol. 2019, 170, 183–189. [Google Scholar] [CrossRef]
- Palutkiewicz, P.; Garbacz, T. The Influence of Blowing Agent Addition, Glass Fiber Filler Content and Mold Temperature on Selected Properties, Surface State and Structure of Injection Molded Parts from Polyamide. Cell. Polym. 2016, 35, 159–192. [Google Scholar] [CrossRef]
- Garbacz, T.; Palutkiewicz, P. Effectiveness of Blowing Agents in the Cellular Injection Molding Process. Cell. Polym. 2015, 34, 189–214. [Google Scholar] [CrossRef]
- Sykutera, D.; Szewczykowski, P.; Roch, M.; Wajer, L.; Grabowski, M.; Bielinski, M. Effect of nitrogen content on physical properties of glass fiber reinforced polyamide 6 prepared by microcellular injection molding. Polimery 2018, 63, 743–749. [Google Scholar] [CrossRef]
- Szostak, M.; Krzywdzinska, P.; Barczewski, M. MuCell and InduMold technologies in production of high quality automotive parts from polymer materials. Polimery 2018, 63, 145–152. [Google Scholar] [CrossRef]
- Su, B.; Zhou, Y.-G.; Dong, B.; Yan, C. Effect of Compatibility on the Foaming Behavior of Injection Molded Polypropylene and Polycarbonate Blend Parts. Polymers 2019, 11, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bociąga, E.; Palutkiewicz, P. Effects of blowing agent content and injection moulding conditions on selected properties and surface quality of polypropylene moulded parts. Polimery 2012, 57, 38–48. [Google Scholar] [CrossRef]
- Ibhadon, A.O. Physical ageing in isotactic polypropylene. J. Appl. Polym. Sci. 1996, 62, 1843–1846. [Google Scholar] [CrossRef]
- Piccarolo, S. Ageing of isotactic polypropylene due to morphology evolution, experimental limitations of realtime density measurements with a gradient column. Polymer 2006, 47, 5610–5622. [Google Scholar] [CrossRef]
- Fiebig, J.; Gahleitner, M.; Paulik, C.; Wolfschwenger, J. Ageing of polypropylene: Processes and consequences. Polym. Test. 1999, 18, 257–266. [Google Scholar] [CrossRef]
- Gahleitner, M.; Fiebig, J.; Wolfschwenger, J.; Dreiling, G.; Paulik, C. Post-Crystallization and Physical Aging of Polypropylene: Material and Processing Effects. J. Macromol. Sci. Part B 2002, 41, 833–849. [Google Scholar] [CrossRef]
- Yue, C.Y.; Msuya, W.F. Changes in yield in polypropylene of different morphology caused by physical ageing. J. Mater. Sci. Lett. 1990, 9, 985–988. [Google Scholar] [CrossRef]
- Sližová, M.; Stašek, M.; Raab, M. Polypropylene after thirty years of storage: Mechanical proof of heterogeneous aging. Polym. J. 2020, 52, 775–781. [Google Scholar] [CrossRef]
- Tomlins, P.; Read, B. Creep and physical ageing of polypropylene: A comparison of models. Polymer 1998, 39, 355–367. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, S.; Sun, B.; Ma, S.; Zhang, J.; Li, Q.; Hu, G.-H. Effect of mold temperature on the structures and mechanical properties of micro-injection molded polypropylene. Mater. Des. 2015, 88, 245–251. [Google Scholar] [CrossRef]
- Farotti, E.; Mancini, E.; Bellezze, T.; Sasso, M. Investigation of the Effects of Mold Temperature, Test Temperature and Strain Rate on Mechanical Behaviour of Polypropylene. J. Dyn. Behav. Mater. 2019, 5, 344–360. [Google Scholar] [CrossRef]
- Sykutera, D.; Wajer, Ł.; Kosciuszko, A.; Szewczykowski, P.P.; Czyżewski, P. The Influence of Processing Conditions on the Polypropylene Apparent Viscosity Measured Directly in the Mold Cavity. Macromol. Symp. 2018, 378, 1700056. [Google Scholar] [CrossRef]
- Menyhárd, A.; Faludi, G.; Varga, J. β-Crystallisation tendency and structure of polypropylene grafted by maleic anhydride and its blends with isotactic polypropylene. J. Therm. Anal. Calorim. 2008, 93, 937–945. [Google Scholar] [CrossRef]
Sample | Sample Length (mm) | Shrinkage (%) |
---|---|---|
PP20 504h A | 164.54 ± 0.03 | 2.06 ± 0.2 |
PP80 504h A | 164.59 ± 0.03 | 2.03 ± 0.02 |
Conditioning Time (h) | Δh (mm) | |
---|---|---|
PP20 | PP80 | |
1 | Reference | Reference |
504 | 0.040 ± 0.005 | 0.090 ± 0.008 |
504A | 0.070 ± 0.010 | 0.140 ± 0.009 |
Conditioning Time (h) | Mold Temperature (°C) | Density (g/cm3) | Xρ (%) | Melting Enthalpy (J/g) | XC (%) |
---|---|---|---|---|---|
1 | 20 | 0.895 ± 0.003 | 51.0 | 91.39 ± 1.13 | 61.7 |
80 | 0.899 ± 0.002 | 56.0 | 95.66 ± 0.97 | 64.6 | |
504 | 20 | 0.902 ± 0.003 | 59.1 | 94.58 ± 0.95 | 63.9 |
80 | 0.904 ± 0.003 | 62.1 | 96.83 ± 1.25 | 65.5 | |
504A | 20 | 0.911 ± 0.002 | 70.6 | 109.0 ± 1.21 | 73.6 |
80 | 0.911 ± 0.002 | 70.6 | 112.8 ± 1.04 | 76.2 |
Mold Temperature (°C) | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) | Impact Strength (kJ/m2) |
---|---|---|---|---|
20 | 1650 ± 30 | 34.8 ± 0.15 | 22.1 ± 2.6 | 220.1 ± 4.9 |
80 | 1710 ± 16 | 34.9 ± 0.25 | 21.4 ± 4.7 | 90.8 ± 17.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kościuszko, A.; Marciniak, D.; Sykutera, D. Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene. Materials 2021, 14, 22. https://doi.org/10.3390/ma14010022
Kościuszko A, Marciniak D, Sykutera D. Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene. Materials. 2021; 14(1):22. https://doi.org/10.3390/ma14010022
Chicago/Turabian StyleKościuszko, Artur, Dawid Marciniak, and Dariusz Sykutera. 2021. "Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene" Materials 14, no. 1: 22. https://doi.org/10.3390/ma14010022
APA StyleKościuszko, A., Marciniak, D., & Sykutera, D. (2021). Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene. Materials, 14(1), 22. https://doi.org/10.3390/ma14010022