A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Characterisation of Honey
2.3. Rheological Assays
2.3.1. Hysteresis Loop Test
2.3.2. The Determination of Time-Dependent Behaviour
- —shear stress (Pa)
- —value of the shear stress in the first second of the measurement (Pa)
- —time coefficient of the thixotropic breakdown (-)
- —time of shearing (s)
2.3.3. Dynamic Frequency Sweep Test
2.3.4. Mathematical Modelling
- —shear stress (Pa)
- —yield stress (Pa)
- —consistency factor (Pa·sn)
- —shear rate (s−1)
- —flow index (-)
2.4. Statistical Analysis
3. Results
3.1. Hysteresis Area
3.2. Dependence of the Apparent Viscosity versus Time
- —apparent viscosity in the 1st second of the assay (Pa·s)
- —apparent viscosity in the 300th second of the assay (Pa·s)
3.3. Frequency Sweep Test
- —the angular frequency (rad·s−1)
- —the degree of a declining complex viscosity
- —the initial value of the complex viscosity at 1 rad·s−1
4. Discussion
5. Conclusions
- The area value of the hysteresis loop is sensitive to both external and internal factors. This is an unstable parameter and we do not recommend using it as a comparison parameter.
- Due to the low variability of the measured values, the relative comparison n-value parameter and parameter appear to be suitable.
- The dependence of the measured parameters n, B, and C on the degree of the dilution is non-linear and a distinct step change occurs between samples S40 and S60, i.e., the samples that contained 40% (w/w) heather honey and 60% (w/w), respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | S0 | S10 | S20 | S40 | S60 | S80 | S100 |
---|---|---|---|---|---|---|---|
S0 | X | - | - | - | - | - | - |
S10 | 0.9999 | X | - | - | - | - | - |
S20 | 0.9950 | 0.9999 | X | - | - | - | - |
S40 | 0.3652 | 0.5596 | 0.7345 | X | - | - | - |
S60 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | X | - | - |
S80 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0482 | X | - |
S100 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0427 | X |
Sample | S0 | S10 | S20 | S40 | S60 | S80 | S100 |
---|---|---|---|---|---|---|---|
S0 | X | - | - | - | - | - | - |
S10 | 0.27992 | X | - | - | - | - | - |
S20 | 0.09663 | 0.99876 | X | - | - | - | - |
S40 | <0.001 | 0.04449 | 0.14767 | X | - | - | - |
S60 | <0.001 | <0.001 | <0.001 | <0.001 | X | - | - |
S80 | <0.001 | <0.001 | <0.001 | <0.001 | 0.00133 | X | - |
S100 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.5623 | X |
Sample | S0 | S10 | S20 | S40 | S60 | S80 | S100 |
---|---|---|---|---|---|---|---|
S0 | X | - | - | - | - | - | - |
S10 | 0.999368 | X | - | - | - | - | - |
S20 | 0.999771 | 1.000000 | X | - | - | - | - |
S40 | 0.927389 | 0.994405 | 0.990261 | X | - | - | - |
S60 | 0.252295 | 0.472161 | 0.431502 | 0.841039 | X | - | - |
S80 | 0.022838 | 0.057487 | 0.049694 | 0.194941 | 0.873087 | X | - |
S100 | 0.000879 | 0.002172 | 0.001869 | 0.008977 | 0.137472 | 0.739904 | X |
References
- Witczak, M.; Juszczak, L.; Gałkowska, D. Non-Newtonian behaviour of heather honey. J. Food Eng. 2011, 104, 532–537. [Google Scholar] [CrossRef]
- Dezmirean, D.S.; Mărghitaș, L.A.; Fiț, N.; Chirilă, F.; Gherman, B.; Mărgăoan, R.; Bobiș, O. Antibacterial Effect of Heather Honey (Calluna vulgaris) against Different Microorganisms of Clinical Importance. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Anim. Sci. Biotechnol. 2015, 72, 72–77. [Google Scholar] [CrossRef]
- Lehébel-Péron, A.; Sidawy, P.; Dounias, E.; Schatz, B. Attuning local and scientific knowledge in the context of global change: The case of heather honey production in southern France. J. Rural Stud. 2016, 44, 132–142. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Seijo-Rodríguez, A.; Seijo, M.C. Characterization of the honey produced in heather communities (NW Spain). J. Apic. Res. 2019, 58, 84–91. [Google Scholar] [CrossRef]
- Frydman, G.H.; Olaleye, D.; Annamalai, D.; Layne, K.; Yang, I.; Kaafarani, H.M.A.; Fox, J.G. Manuka honey microneedles for enhanced wound healing and the prevention and/or treatment of Methicillin-resistant Staphylococcus aureus (MRSA) surgical site infection. Sci. Rep. 2020, 10, 13229. [Google Scholar] [CrossRef] [PubMed]
- Le Conte, Y.; Navajas, M. Climate change: Impact on honey bee populations and diseases. Rev. Sci. Tech. Off. Int. Epizoot. 2008, 27, 499–510. [Google Scholar]
- Zábrodská, B.; Vorlová, L. Adulteration of honey and available methods for detection—A review. Acta Vet. Brno 2014, 83, S85–S102. [Google Scholar] [CrossRef] [Green Version]
- Persano Oddo, L.; Piro, R. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35, S38–S81. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P.; Lüllman, C. Harmonised methods of the European Honey Commission. Apidologie 1997, 28, 1–59. [Google Scholar]
- Louveaux, J. Essai de caractérisation des miels de Callune (Calluna vulgaris Salisb.). Annales de L’Abeille 1966, 9, 351–358. [Google Scholar]
- Osés, S.M.; Ruiz, M.O.; Pascual-Maté, A.; Bocos, A.; Fernández-Muiño, M.A.; Sancho, M.T. Ling heather honey authentication by thixotropic parameters. Food Bioprocess Technol. 2017, 10, 973–979. [Google Scholar] [CrossRef]
- Munro, J.A. The viscosity and thixotropy of honey. J. Entomol. 1943, 36, 769–777. [Google Scholar] [CrossRef]
- Waś, E.; Rybak-Chmielewska, H.; Szczęsna, T.; Kachaniuk, K.; Teper, D. Characteristic of polish unifloral honey. III. Heather honey (Calluna vulgaris L.). J. Apic. Sci. 2011, 55, 129–136. [Google Scholar]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey. Talanta 2019, 203, 235–241. [Google Scholar] [CrossRef]
- Song, Y.Q.; Milne, R.I.; Zhou, H.X.; Ma, X.L.; Fang, J.Y.; Zha, H.G. Floral nectar chitinase is a potential marker for monofloral honey botanical origin authentication: A case study from loquat (Eriobotrya japonica Lindl.). Food Chem. 2019, 282, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhao, H.; Zhu, M.; Zhang, J.; Cheng, N.; Cao, W. Method for identifying acacia honey adulterated by resin absorption: HPLC-ECD coupled with chemometrics. LWT Food Sci. Technol. 2020, 118, 108863. [Google Scholar] [CrossRef]
- Geana, E.I.; Ciucure, C.T. Establishing authenticity of honey via comprehensive Romanian honey analysis. Food Chem. 2020, 306, 125595. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Tatlisu, N.B.; Toker, O.S.; Karaman, S.; Dertli, E.; Sagdic, O.; Arici, M. Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. Food Res. Int. 2014, 64, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, U.; Mishra, S. Prediction of Adulteration in Honey Using Rheological Parameters. Int. J. Food Prop. 2015, 18, 2056–2063. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S.; Todosi, E. Rheological analysis of honeydew honey adulterated with glucose, fructose, inverted sugar, hydrolysed inulin syrup and malt wort. LWT Food Sci. Technol. 2018, 95, 1–8. [Google Scholar] [CrossRef]
- Anidiobu, V.O.; Nwalor, J.U.; Babalola, F.U. Comparative Study of Rheological Characterization and Classification of Honeys with Their Physicochemical Properties. Int. J. Food Eng. 2019, 5, 268–275. [Google Scholar] [CrossRef]
- Nayik, G.A.; Dar, B.N.; Nanda, V. Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab. J. Chem. 2019, 12, 3151–3162. [Google Scholar] [CrossRef] [Green Version]
- Kurt, A.; Palabiyik, I.; Gunes, R.; Konar, K.; Toker, O.S. Determining Honey Adulteration by Seeding Method: An Initial Study with Sunflower Honey. Food Anal. Methods 2020, 13, 952–961. [Google Scholar] [CrossRef]
- Szczęsna, T.; Rybak-Chmielewska, H. The temperature correction factor for electrical conductivity of honey. J. Apic. Sci. 2004, 48, 97–102. [Google Scholar]
- Ohe, W.; Persano Oddo, L.; Piana, M.L.; Morlot, M.; Martin, P. Harmonized methods of melissopalynology. Apidologie 2004, 35, S18–S25. [Google Scholar] [CrossRef]
- Maurizio, A.; Louveaux, J. Union des Groupements Apicoles Français, 1st ed.; Pollens de Plantes Melliféres d’Europe: Paris, France, 1965; p. 148. [Google Scholar]
- Sawyer, R. Honey Identification, 1st ed.; Cardiff Academic Press: Cardiff, UK, 1988; p. 115. [Google Scholar]
- Ohe, K.; Ohe, W. LAVES—Institut für Bienenkunde, 3rd ed.; Celle’s Melissopalynological Collection: Celle, Germany, 2007; p. 236. [Google Scholar]
- Dapčević, T.; Dokić, P.; Hadnađev, M.; Krstonošić, V. An approach in numerical evaluation of thixotropy. Food Process. Qual. Saf. 2008, 35, 33–39. [Google Scholar]
- Tovar, C.; Rodríguez-Flores, M.S.; Escuredo, O.; Del Carmen Seijo, M. Rheology of Honey-Advances in Rheology Research, 1st ed.; Nova Science Publisher: New York, NY, USA, 2017; pp. 175–191. [Google Scholar]
- Karasu, S.; Toker, O.S.; Yilmaz, M.T.; Karaman, S.; Dertli, E. Thermal loop test to determine structural changes and thermal stability of creamed honey: Rheological characterization. J. Food Eng. 2015, 150, 90–98. [Google Scholar] [CrossRef]
- Kumbár, V.; Strnková, J.; Nedomová, Š.; Buchar, J. Fluid dynamics of liquid egg products. J. Biol. Phys. 2015, 41, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Kumbár, V.; Nedomová, Š.; Trnka, J.; Buchar, J.; Pytel, R. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes. Poult. Sci. 2016, 95, 1693–1701. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: http://www.R-project.org/ (accessed on 23 March 2020).
- Barnes, H.A. Thixotropy—A review. J. Non Newton. Fluid Mech. 1997, 70, 1–33. [Google Scholar] [CrossRef]
- Mewis, J.; Wagner, N.J. Thixotropy. Adv. Colloid Interface Sci. 2009, 147–148, 214–227. [Google Scholar] [CrossRef]
- Adamczyk, G.; Krystyjan, M.; Dobosz, A.; Sikora, M. Thixotropic properties of starch. Food Sci. Technol. Qual. 2013, 20, 16–31. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Behrouzian, F.; Alghooneh, A. Temperature dependency of the interaction between xanthan gum and sage seed gum: An interpretation of dynamic rheology and thixotropy based on creep test. J. Texture Stud. 2017, 48, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Stelmakienė, A.; Ramanauskiene, K.; Briedis, V.; Leskauskaite, D. Examination of rheological and physicochemical characteristics in Lithuanian honey. Afr. J. Biotechnol. 2012, 11, 12406–12414. [Google Scholar] [CrossRef]
- Samanalieva, J.; Senge, B. Analytical and rheological investigations into selected unifloral German honey. Eur. Food Res. Technol. 2009, 229, 107–113. [Google Scholar] [CrossRef]
- Afonso, M.J.; Magalhães, M.; Fernandes, L.; Castro, M.; Ramalhosa, E.C.D. Temperature Effect on Rheological Behavior of Portuguese Honeys. Pol. J. Food Nutr. Sci. 2018, 68, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Nedomova, S.; Kumbar, V.; Pytel, R.; Buchar, J. Mechanical properties of sugar beet root during storage. Int. Agrophys. 2017, 31, 507–513. [Google Scholar] [CrossRef] [Green Version]
Sample | Botanical Origin | Geographical Origin | Pollen Grains in 1 g of Honey | Percentage of Important Pollen Grains | Important Pollen Grains in 1 g of Honey | Honeydew Elements | Water Content (%) | Electrolytic Conductivity (mS·cm−1) |
---|---|---|---|---|---|---|---|---|
PA/386 | heather nectar honey | Norway | 8886 ± 467 | 28.1 ± 1.2 | 1786 ± 21 | sporadic clusters, no bodies | 16.9 ± 0.2 | 86.6 ± 4.2 |
PA/416 | lime nectar honey | Czech Republic | 2252 ± 139 | 9.6 ± 0.5 | 216 ± 1 | sporadic clusters, no bodies | 17.8 ± 0.1 | 50.4 ± 1.9 |
Sample | Mean (Pa·s−1) | Median (Pa·s−1) | SD (Pa·s−1) | VC (%) | IQR (Pa·s−1) | S-W (-) |
---|---|---|---|---|---|---|
S0 | −493.87 | −532.96 | 240.619 | −48.7208 | 320.631 | 0.72 |
S10 | −217.28 | −245.97 | 69.333 | −31.9095 | 82.403 | 0.05 |
S20 | 20.39 | 0.67 | 81.724 | 400.7579 | 112.616 | 0.54 |
S40 | 1254.58 | 1476.30 | 629.889 | 50.2071 | 769.839 | 0.14 |
S60 | 7742.53 | 7386.65 | 1342.529 | 17.3397 | 2020.350 | 0.39 |
S80 | 10,409.83 | 10,577.50 | 2469.510 | 23.7229 | 3373.350 | 0.91 |
S100 | 13,124.50 | 12,859.00 | 974.223 | 7.4229 | 1473.000 | 0.35 |
Ostwald-De Waele Model | Herschel-Bulkley Model | ||||||
---|---|---|---|---|---|---|---|
Sample | K (Pa·sn) | n (-) | R2 (-) | K (Pa·sn) | n (-) | R2 | |
S0 | 7.91 ± 0.3 | 0.9924 ± 0.007 | 1.0000 | −1.15 ± 2.2 | 8.0 ± 0.4 | 0.9891 ± 0.011 | 1.0000 |
S10 | 8.79 ± 0.3 | 0.9864 ± 0.003 | 1.0000 | 0.29 ± 1.7 | 8.8 ± 0.5 | 0.9872 ± 0.008 | 1.0000 |
S20 | 10.35 ± 0.1 | 0.9768 ± 0.003 | 1.0000 | −0.02 ± 1.2 | 10.4 ± 0.2 | 0.9768 ± 0.003 | 1.0000 |
S40 | 17.39 ± 1.1 | 0.9265 ± 0.003 | 1.0000 | −2.86 ± 2.8 | 17.8 ± 1.4 | 0.9220 ± 0.007 | 1.0000 |
S60 | 43.80 ± 2.1 | 0.7970 ± 0.006 | 0.9998 | 17.28 ± 7.8 | 40.2 ± 2.3 | 0.8141 ± 0.014 | 0.9998 |
S80 | 67.22 ± 6.1 | 0.7634 ± 0.017 | 0.9995 | 36.45 ± 6.7 | 58.8 ± 5.5 | 0.7898 ± 0.019 | 0.9997 |
S100 | 74.50 ± 6.2 | 0.6745 ± 0.019 | 0.9986 | 44.94 ± 22.9 | 61.0 ± 6.4 | 0.7134 ± 0.016 | 0.9990 |
Sample | Mean (-) | Median (-) | SD (-) | VC (%) | IQR (-) | S-W (-) |
---|---|---|---|---|---|---|
S0 | 1.0534 | 1.0260 | 0.0610 | 0.0338 | 5.7936 | 0.01092 |
S10 | 1.0108 | 1.0110 | 0.0043 | 0.0062 | 0.4218 | 0.48 |
S20 | 1.0005 | 1.0049 | 0.0131 | 0.0143 | 1.3060 | 0.1875 |
S40 | 0.9514 | 0.9522 | 0.0143 | 0.0233 | 1.4984 | 0.1185 |
S60 | 0.8251 | 0.8258 | 0.0209 | 0.0302 | 2.5322 | 0.5364 |
S80 | 0.7390 | 0.7390 | 0.0184 | 0.0297 | 2.4838 | 0.1605 |
S100 | 0.7054 | 0.7074 | 0.0075 | 0.0075 | 1.0650 | 0.4843 |
Sample | A (Pa) | B (-) | R2 |
---|---|---|---|
S0 | 368.5 ± 14.2 | −4.5 ± 2.8 | 0.83 ± 0.13 |
S10 | 441.3 ± 9.4 | −1.7 ± 1.3 | 0.68 ± 0.17 |
S20 | 515.9 ± 27.0 | −2.2 ± 1.6 | 0.55 ± 0.34 |
S40 | 673.7 ± 22.7 | 2.3 ± 2.2 | 0.76 ± 0.19 |
S60 | 864.5 ± 111.4 | 10.6 ± 7.0 | 0.75 ± 0.17 |
S80 | 1284.8 ± 72.2 | 18.4 ± 12.4 | 0.73 ± 0.21 |
S100 | 1064.2 ± 75.6 | 28.0 ± 18.5 | 0.84 ± 0.19 |
Sample | C (-) | R2 |
---|---|---|
S0 | −1.93 ± 1.34 | 0.81 ± 0.2 |
S10 | −0.91 ± 0.85 | 0.66 ± 0.5 |
S20 | −0.61 ± 1.05 | 0.31 ± 0.4 |
S40 | −2.93 ± 3.22 | 0.92 ± 0.1 |
S60 | −5.05 ± 1.43 | 0.95 ± 0.01 |
S80 | −18.6 ± 3.90 | 0.95 ± 0.002 |
S100 | −15.7 ± 2.25 | 0.95 ± 0.01 |
Herschel-Bulkley | Ostwald-de Waele | ||||||||
---|---|---|---|---|---|---|---|---|---|
Source | n (-) | K (Pa·sn) | n (-) | K (Pa·sn) | t (°C) | ϕ (%) | HA (Pa·s−1) | ||
(A) | 0.70 ± 0.01 | 50.7 ± 1.2 | 50.2 ± 1.3 | - | - | 20 | 18.0 | 15,000 | 100 |
0.77 ± 0.01 | 29.1 ± 0.3 | 50.2 ± 1.9 | - | - | 20 | 18.2 | 7000 | ||
0.88 ± 0.01 | 10.8 ± 0.6 | 3.8 ± 0.2 | - | - | 20 | 20 | 2000 | ||
(B) | 0.901 | 13.39 | 0.15 | - | - | 20 | 18.7 | - | 50 |
(C) | 0.988 | 112 | −0.64 | 0.996 | 4.71 | 30 | 24.0 | - | 5 |
(D) | - | - | - | 0.88 ± 0.1 | 23.67 ± 8.0 | 25 | 17.5 | 6994 ± 1945 | 100 |
(A) | 0.70 ± 0.01 | 50.7 ± 1.2 | 50.2 ± 1.3 | - | - | 20 | 18.0 | 15,000 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Přidal, A.; Trávníček, P.; Kudělka, J.; Nedomová, Š.; Ondrušíková, S.; Trost, D.; Kumbár, V. A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey. Materials 2021, 14, 2472. https://doi.org/10.3390/ma14102472
Přidal A, Trávníček P, Kudělka J, Nedomová Š, Ondrušíková S, Trost D, Kumbár V. A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey. Materials. 2021; 14(10):2472. https://doi.org/10.3390/ma14102472
Chicago/Turabian StylePřidal, Antonín, Petr Trávníček, Jan Kudělka, Šárka Nedomová, Sylvie Ondrušíková, Daniel Trost, and Vojtěch Kumbár. 2021. "A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey" Materials 14, no. 10: 2472. https://doi.org/10.3390/ma14102472
APA StylePřidal, A., Trávníček, P., Kudělka, J., Nedomová, Š., Ondrušíková, S., Trost, D., & Kumbár, V. (2021). A Rheological Analysis of Biomaterial Behaviour as a Tool to Detect the Dilution of Heather Honey. Materials, 14(10), 2472. https://doi.org/10.3390/ma14102472