Mechanical Properties of Polyurethane Adhesive Bonds in a Mineral Wool-Based External Thermal Insulation Composite System for Timber Frame Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adhesive
2.2. Mineral Wool
2.3. Substrates
- 18 mm thick oriented strand boards (OSB) with properties appropriate for OSB-3, according to EN 13986 [41];
- 12 mm thick fibre-reinforced gypsum boards (FGB) with properties appropriate for DEFH1IR, according to ETA-14/0312 [42];
- 16 mm thick cement-bonded particleboards (CPB) with properties appropriate for type 634-2, according to EN 13986 [41].
2.4. Scanning Electron Microscopy (SEM)
2.5. Apparent Density
2.6. Bond Strength
2.7. Shear Strength and Shear Modulus
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
3.2. Apparent Density
3.3. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michalak, J.; Czernik, S.; Marcinek, M.; Michałowski, B. Environmental burdens of External Thermal Insulation Systems. Expanded Polystyrene vs. Mineral Wool: Case Study from Poland. Sustainability 2020, 12, 4532. [Google Scholar] [CrossRef]
- Pasker, R. The European ETICS market–Do ETICS sufficiently contribute to meet political objectives? In Proceedings of the 4th European ETICS Forum, Warsaw, Poland, 5 October 2017; European Association for External Thermal Insulation Composite Systems (EAE): Baden-Baden, Germany, 2017. [Google Scholar]
- Czernik, S.; Marcinek, M.; Michałowski, B.; Piasecki, M.; Tomaszewska, J.; Michalak, J. Environmental Footprint of Cementitious Adhesives—Components of ETICS. Sustainability 2020, 12, 8998. [Google Scholar] [CrossRef]
- Schiavoni, S.; D’Alessandro, F.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sustain. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- European Organization for Technical Assessment (EOTA). EAD 040083-00-0404 European Assessment Document External Thermal Insulation Composite Systems (ETICS) with Renderings; European Organization for Technical Assessment (EOTA): Brussels, Belgium, 2020. [Google Scholar]
- European Organization for Technical Assessment (EOTA). EAD 040089-00-0404 European Assessment ETICS with Renderings for the Use on Timber Frame Buildings; European Organization for Technical Assessment (EOTA): Brussels, Belgium, 2017. [Google Scholar]
- Pasztory, Z.; Peralta, P.N.; Molnar, S.; Peszlen, I. Modelling the hydrothermal performance of selected North American and comparable European wood-frame house walls. Energy Build. 2012, 49, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Kvande, T.; Bakken, N.; Bergheim, E.; Thue, J. Durability of ETICS with Rendering in Norway—Experimental and Field Investigations. Buildings 2018, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Institute of Ceramics and Buildings Materials (ICiMB). European Technical Assessment ETA 17/0204; Institute of Ceramics and Buildings Materials (ICiMB): Warsaw, Poland, 2017. [Google Scholar]
- Technical and Test Institute for Construction (TZUS). European Technical Assessment ETA 16/0384; Technical and Test Institute for Construction (TZUS): Prague, Czech Republic, 2016. [Google Scholar]
- Frigione, M.; Aguiar, J.L.B.d. Innovative Materials for Construction. Materials 2020, 13, 5448. [Google Scholar] [CrossRef] [PubMed]
- Gama, N.; Ferreira, A.; Barros-Timmons, A. Polyurethane Foams: Past, Present, and Future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somarathna, H.M.C.C.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K.H. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr. Build. Mater. 2018, 190, 995–1014. [Google Scholar] [CrossRef]
- Kalamees, T.; Põldaru, M.; Ilomets, S.; Klõšeiko, P.; Kallavus, U.; Rosenberg, M.; Õiger, K. Failure analysis of a spray polyurethane foam roofing system. J. Build. Eng. 2020, 32, 101752. [Google Scholar] [CrossRef]
- Hallik, J.; Gustavson, H.; Kalamees, T. Air Leakage of Joints Filled with Polyurethane Foam. Buildings 2019, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Dzhamuev, B.K. Increasing the Solidity of Masonry Walls Made of Cellular Concrete Blocks of Autoclave Hardening by using Polyurethane Foam Adhesive Composition as a Masonry Solution. J. Phys. Conf. Ser. 2020, 1655, 012085. [Google Scholar] [CrossRef]
- Graubohm, M. Investigations on the Gluing of Masonry Units with Polyurethane Adhesive Investigations on the gluing of masonry units with polyurethane adhesive. In Proceedings of the 8th International Masonry Conference, Dresden, Germany, 4–7 July 2010. [Google Scholar]
- Gama, N.; Ferreira, A.; Barros-Timmons, A. Cure and performance of castor oil polyurethane adhesive. Int. J. Adhes. Adhes. 2019, 95, 102413. [Google Scholar] [CrossRef]
- Zamorowska, R.; Sieczkowski, J. Złożone systemy ocieplania ścian zewnętrznych budynków (ETICS) z zastosowaniem styropianu lub wełny mineralnej i wypraw tynkarskich. Warunki Techniczne Wykonania i Odbioru Robót Budowalnych, 8th ed.; Instytut Techniki Budowlanej (ITB): Warsaw, Poland, 2019. [Google Scholar]
- Golling, F.E.; Pires, R.; Hecking, A.; Weikard, J.; Richter, F.; Danielmeier, K.; Dijkstra, D. Polyurethanes for coatings and adhesives—Chemistry and applications. Polym. Int. 2019, 68, 848–855. [Google Scholar] [CrossRef]
- Regulation (EU) No 305/2011 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2011.088.01.0005.01.ENG&toc=OJ:L:2011:088:TOC (accessed on 15 January 2021).
- European Organization for Technical Assessment (EOTA). ETAG 004: Guideline for European Technical Approval of External Thermal Insulation Composite Systems (ETICS); European Organization for Technical Assessment (EOTA): Brussels, Belgium, 2013. [Google Scholar]
- European Organization for Technical Assessment (EOTA). TR 46 Test Methods for Foam Adhesives for External Thermal Insulation Composite Systems (ETICS); European Organization for Technical Assessment (EOTA): Brussels, Belgium, 2014. [Google Scholar]
- European Committee for Standardization (CEN). EN 13162:2015 Thermal Insulation Products for Buildings. Factory Made Mineral Wool (MW) Products. Specification; European Committee for Standardization (CEN): Brussels, Belgium, 2015. [Google Scholar]
- Sulakatko, V.; Vogdt, F. Construction Process Technical Impact Factors on Degradation of the External Thermal Insulation Composite System. Sustainability 2018, 10, 3900. [Google Scholar] [CrossRef] [Green Version]
- Tavares, J.; Silva, A.; de Brito, J. Computational models applied to the service life prediction of External Thermal Insulation Composite Systems (ETICS). J. Build. Eng. 2020, 27, 100944. [Google Scholar] [CrossRef]
- Varela Luján, S.; Viñas Arrebola, C.; Rodríguez Sánchez, A.; Aguilera Benito, P.; González Cortina, M. Experimental comparative study of the thermal performance of the façade of a building refurbished using ETICS, and quantification of improvements. Sustain. Cities Soc. 2019, 51, 101713. [Google Scholar] [CrossRef]
- Uygunoğlu, T.; Özgüven, S.; Çalış, M. Effect of plaster thickness on performance of external thermal insulation cladding systems (ETICS) in buildings. Constr. Build. Mater. 2016, 122, 496–504. [Google Scholar] [CrossRef]
- Santoni, A.; Bonfiglio, P.; Davy, J.L.; Fausti, P.; Pompoli, F.; Pagnoncelli, L. Sound transmission loss of ETICS cladding systems considering the structure-borne transmission via the mechanical fixings: Numerical prediction model and experimental evaluation. Appl. Acoust. 2017, 122, 88–97. [Google Scholar] [CrossRef]
- Michałowski, B.; Marcinek, M.; Tomaszewska, J.; Czernik, S.; Piasecki, M.; Geryło, R.; Michalak, J. Influence of Rendering Type on the Environmental Characteristics of Expanded Polystyrene-Based External Thermal Insulation Composite System. Buildings 2020, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Malanho, S.; do Rosário Veiga, M. Bond strength between layers of ETICS–Influence of the characteristics of mortars and insulation materials. J. Build. Eng. 2020, 28, 101021. [Google Scholar] [CrossRef]
- Liisma, E.; Raado, L.-M.; Lumi, S.; Lilli, I.; Sulkatko, V. The Effect of Moisture Content of Insulation Boards on the Adhesion Strength of ETICS. Recent Adv. Civ. Eng. Mech. 2001, 66, 103–108. [Google Scholar]
- Ramos, N.M.M.; Simões, M.L.; Delgado, J.M.P.Q.; De Freitas, V.P. Reliability of the pull-off test for in situ evaluation of adhesion strength. Constr. Build. Mater. 2012, 31, 86–93. [Google Scholar] [CrossRef]
- Niziurska, M.; Dróżdż, W. Insulation of walls in the frame technology–legislation and technology. Izolacje 2017, 22, 72–74. [Google Scholar]
- Strobech, C. Polyurethane adhesives. Constr. Build. Mater. 1990, 4, 215–217. [Google Scholar] [CrossRef]
- Kurańska, M.; Barczewski, R.; Barczewski, M.; Prociak, A.; Polaczek, K. Thermal Insulation and Sound Absorption Properties of Open-Cell Polyurethane Foams Modified with Bio-Polyol Based on Used Cooking Oil. Materials 2020, 13, 5673. [Google Scholar] [CrossRef] [PubMed]
- Andersons, J.; Kirpluks, M.; Cabulis, U. Reinforcement Efficiency of Cellulose Microfibers for the Tensile Stiffness and Strength of Rigid Low-Density Polyurethane Foams. Materials 2020, 13, 2725. [Google Scholar] [CrossRef] [PubMed]
- De Luca Bossa, F.; Santillo, C.; Verdolotti, L.; Campaner, P.; Minigher, A.; Boggioni, L.; Losio, S.; Coccia, F.; Iannace, S.; Lama, G.C. Greener Nanocomposite Polyurethane Foam Based on Sustainable Polyol and Natural Fillers: Investigation of Chemico-Physical and Mechanical Properties. Materials 2020, 13, 211. [Google Scholar] [CrossRef]
- Kairytė, A.; Kremensas, A.; Balčiūnas, G.; Członka, S.; Strąkowska, A. Closed Cell Rigid Polyurethane Foams Based on Low Functionality Polyols: Research of Dimensional Stability and Standardised Performance Properties. Materials 2020, 13, 1438. [Google Scholar] [CrossRef] [Green Version]
- Thirumal, M.; Khastgir, D.; Singha, N.K.; Manjunath, B.S.; Naik, Y.P. Effect of foam density on the properties of water blown rigid polyurethane foam. Appl. Polym. 2008, 3, 108. [Google Scholar] [CrossRef]
- European Committee for Standardization (CEN). EN 13986:2015 Wood-Based Panels for Use in Construction. Characteristics, Evaluation of Conformity and Marking; European Committee for Standardization (CEN): Brussels, Belgium, 2015. [Google Scholar]
- Austrian Institute of Construction Engineering (OIB). ETA-14/0312; Austrian Institute of Construction Engineering (OIB): Vienna, Austria, 2015. [Google Scholar]
- International Organization for Standardization (ISO). ISO 854:2019; International Organization for Standardization ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Szewczak, E.; Winkler-Skalna, A.; Czarnecki, L. Sustainable Test Methods for Construction Materials and Elements. Materials 2020, 13, 606. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization (CEN). EN 12090:2013 Thermal Insulating Products for Building Applications—Determination of Shear Behaviour; European Committee for Standardization (CEN): Brussels, Belgium, 2013. [Google Scholar]
- Zawadzak, E.; Bil1, M.; Ryszkowska, J.; Nazhat, S.N.; Cho, J.; Bretcanu, O.; Roether, J.A.; Boccaccini, A.R. Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds. Biomed. Mater. 2008, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Sałasińska, K.; Leszczyńska, M.; Celiński, M.; Kozikowski, P.; Kowiorski, K.; Lupińska, L. Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxide. Materials 2021, 14, 1184. [Google Scholar] [CrossRef] [PubMed]
Symbol Present in Item Code | Property | Type of Boards | |
---|---|---|---|
Lamella | Standard | ||
- | Reaction-to-fire performance | Class A1 or A2 | |
- | Thermal resistance | value declared by the manufacturer according to EN 13162 | |
T5 | Thickness tolerance | −1% or −1 mm1 +3 mm | at least −3% or −3 mm1 +5% or +5 mm2 |
DS(70, -) | Dimensional stability (48 h, T70 °C) | ||
thickness change Δεd | ≤1% | ||
length and width change Δεb | ≤1% | ||
DS(70,90) | Dimensional stability (48 h, T70 °C) | ||
thickness change Δεd | ≤1% | ||
length and width change Δεb | ≤1% | ||
WS | Water absorption after 24 h of partial immersion | ≤1 kg/m2 | |
WL(P) | Water absorption after 28 days of partial immersion | ≤3 kg/m2 | |
MU1 | Water vapour diffusion resistance factor | 1 | |
TR | Perpendicular tensile strength | ≥80 kPa | ≥7.5 kPa |
Property | Value |
---|---|
Minimum 1 limit temp. of application 2 | 5 °C |
Maximum 1 limit temp. of application 2 | 25 °C |
Recommended temp. of storage | >20 °C |
Density (at free foaming, after curing) | 18 ± 2 kg/m3 |
Post-expansion | 2 mm |
Curing time | 6 min |
Cutting time | 20 min |
Designation of Test Series | Type of Substrate | Seasoning Conditions | Conditions of Adhesive Application | Conditions of Curing | |||||
---|---|---|---|---|---|---|---|---|---|
Substrate | Adhesive | ||||||||
T, °C | RH, % | T, °C | RH, % | T, °C | RH, % | T, °C | RH, % | ||
8 mm thick bond | |||||||||
OSB/23/50/8 | OSB | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 |
OSB/25/30/8 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 | |||
OSB/25/90/8 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | |||
OSB/5/-/8 | 5 ± 2 | - 1 | 5 ± 2 | - | 5 ± 2 | - | |||
FGB/23/50/8 | FGB | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 |
FGB/25/30/8 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 | |||
FGB/25/90/8 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | |||
FGB/5/-/8 | 5 ± 2 | - | 5 ± 2 | - | 5 ± 2 | - | |||
CPB/23/50/8 | CPB | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 |
CPB/25/30/8 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 | |||
CPB/25/90/8 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | |||
CPB/5/-/8 | 5 ± 2 | - | 5 ± 2 | - | 5 ± 2 | - | |||
C/23/50/8 | Concrete | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 |
C/25/30/8 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 | |||
C/25/90/8 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | |||
C/5/-/8 | 5 ± 2 | - | 5 ± 2 | - | 5 ± 2 | - | |||
15 mm thick bond | |||||||||
OSB/23/50/15 | OSB | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 | 23 ± 2 | 50 ± 5 |
FCB/23/50/15 | FCB | ||||||||
CPB/23/50/15 | CPB | ||||||||
C/23/50/15 | Concrete |
Designation of Test Series | Type of Substrate | Seasoning Conditions | Conditions of Adhesive Application | Conditions of Curing | |||||
---|---|---|---|---|---|---|---|---|---|
Substrate | Adhesive | ||||||||
T, °C | RH, % | T, °C | RH, % | T, °C | RH, % | T, °C | RH, % | ||
OSB/25/30 | OSB | 25 ± 2 | 30 ± 5 | 23 ± 2 | 50 ± 5 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 |
OSB/25/90 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | |||
OSB/5/- | 5 ± 2 | - 1 | 5 ± 2 | - | 5 ± 2 | - | |||
FGB/25/30 | FGB | 25 ± 2 | 30 ± 5 | 23 ± 2 | 50 ± 5 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 |
FGB/25/90 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | |||
FGB/5/- | 5 ± 2 | - | 5 ± 2 | - | 5 ± 2 | - | |||
CPB/25/30 | CPB | 25 ± 2 | 30 ± 5 | 23 ± 2 | 50 ± 5 | 25 ± 2 | 30 ± 5 | 25 ± 2 | 30 ± 5 |
CPB/25/90 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | 25 ± 2 | 90 ± 5 | |||
CPB/5/- | 5 ± 2 | - | 5 ± 2 | - | 5 ± 2 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudoł, E.; Kozikowska, E. Mechanical Properties of Polyurethane Adhesive Bonds in a Mineral Wool-Based External Thermal Insulation Composite System for Timber Frame Buildings. Materials 2021, 14, 2527. https://doi.org/10.3390/ma14102527
Sudoł E, Kozikowska E. Mechanical Properties of Polyurethane Adhesive Bonds in a Mineral Wool-Based External Thermal Insulation Composite System for Timber Frame Buildings. Materials. 2021; 14(10):2527. https://doi.org/10.3390/ma14102527
Chicago/Turabian StyleSudoł, Ewa, and Ewelina Kozikowska. 2021. "Mechanical Properties of Polyurethane Adhesive Bonds in a Mineral Wool-Based External Thermal Insulation Composite System for Timber Frame Buildings" Materials 14, no. 10: 2527. https://doi.org/10.3390/ma14102527
APA StyleSudoł, E., & Kozikowska, E. (2021). Mechanical Properties of Polyurethane Adhesive Bonds in a Mineral Wool-Based External Thermal Insulation Composite System for Timber Frame Buildings. Materials, 14(10), 2527. https://doi.org/10.3390/ma14102527