Deterioration of Portland Cement Pervious Concrete in Sponge Cities Subjected to Acid Rain
Abstract
:1. Introduction
2. Research Significance
3. Experiment Detail
3.1. Materials
3.2. Specimens Preparation
3.3. Test Methods
3.3.1. Strength
3.3.2. Abrasion Resistance
3.3.3. Water Permeability Coefficient
3.3.4. Wet-Dry Cycles
4. Results and Discussion
4.1. Weight Change
4.2. Mechanical Properties of PCPC
4.2.1. Strength of Control PCPC
4.2.2. Strength of 4% SF PCPC
4.2.3. Strength of PCPC with 8% FAG
4.3. Abrasion Resistance
4.4. Microstructures
5. Conclusions
- (1)
- The compressive strength and the flexural strength of control PCPC are decreased by 30.7% and 40.8%, respectively.
- (2)
- The final compressive and flexural strength of 4% SF PCPC are 6.9% and 25.4% greater than that of the control PCPC, respectively.
- (3)
- The final compressive and flexural strengths of 8% FAG are higher 30.3% and 72.3% than that of the control PCPC, respectively.
- (4)
- The wear loss of PCPC is decreased by 58.8% and 81.9% when 4% SF and 8% FAG are used to replace part of cement and coarse aggregates, respectively.
- (5)
- The addition of 4% SF and 8% FAG improves the acid rain resistance of PCPC. 4% SF increases the water permeability, but FAG reduces the water permeability of PCPC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bassuoni, M.T.; Sonebi, M. Pervious concrete: A sustainable drainage solution. Concrete 2010, 44, 14–16. [Google Scholar]
- Haselbach, L.; Boyer, M.; Kevern, J.; Schaefer, V. Cyclic heat island impacts on traditional versus pervious concrete pavement systems. J. Transp. Res. Board. 2011, 2240, 107–115. [Google Scholar] [CrossRef]
- Kevern, J.; Haselbach, L.; Schaefer, V. Hot weather comparative heat balances in pervious concrete and impervious concrete pavement systems. J. Heat Isl. Inst. Int. 2012, 7, 231–237. [Google Scholar]
- Marolf, A.; Neithalath, N.; Sell, E.; Wegner, K.; Weiss, J.; Olek, J. Influence of aggregate size and gradation on acoustic absorption of enhanced porosity concrete. ACI Mater. J. 2004, 101, 82–91. [Google Scholar]
- Kevern, J.; Wang, K.; Suleiman, M.T.; Schaefer, V. Pervious Concrete Construction Methods and Quality Control. In Proceedings of the NRMCA Concrete Technology Forum, Nashville, TN, USA, 23–24 May 2006. [Google Scholar]
- Mehmet, G.; Erhan, G.; Ganjeena, K.; Süleyman, İ. Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Constr. Build. Mater. 2014, 73, 19–24. [Google Scholar]
- Jing, Y.; Guo, L.J. Experimental study on properties of pervious concrete pavement materials. Cem. Concr. Res. 2003, 33, 381–386. [Google Scholar]
- Narayanan, N.; Milani, S.S.; Omkar, D. Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Mater. Charact. 2010, 61, 802–813. [Google Scholar]
- Wu, H.; Huang, B.; Shu, X.; Dong, Q. Laboratory evaluation of abrasion resistance of Portland cement pervious concrete. Mater. Civ. Eng. 2011, 23, 697–702. [Google Scholar] [CrossRef]
- Chen, M.C.; Wang, K.; Xie, L. Deterioration mechanism of cementitious materials under acid rain attack. Eng. Fail. Anal. 2013, 27, 272–285. [Google Scholar] [CrossRef]
- Wang, T.J.; Jin, L.S.; Li, Z.K.; Lam, K.S. A modeling study on acid rain and recommended emission control strategies in China. Atmos. Environ. 2000, 34, 4467–4477. [Google Scholar] [CrossRef]
- Talero Morales, R.; Triviño Vázquez, F.; Palacios de María, J.; Díaz García, F.F. La aluminosis del cemento aluminoso o un término nuevo para una clásica enfermedad. Mater. Constr. 1989, 216, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.L.; Zhu, Z.M.; Zhu, A.J.; Zhou, L.; Fan, Y.; Lang, L. Deterioration of mode II fracture toughness, compressive strength and elastic modulus of concrete under the environment of acid rain and cyclic wetting-drying. Constr. Build. Mater. 2019, 228, 116809. [Google Scholar] [CrossRef]
- Xie, S.D.; Qi, L.; Zhou, D. Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory. Atmos. Environ. 2004, 38, 4457–4466. [Google Scholar] [CrossRef]
- Su, Q. Neutralization of Artificial Sand Concrete Caused by Acid Rain. In Proceedings of the 2nd International Conference on Applied Mathematics, Simulation and Modelling, Phuket, Thailand, 6–7 August 2017; Inc. DEStech Publications: Lancaster, PA, USA; pp. 479–484. [Google Scholar]
- Zhou, C.L.; Zhu, Z.M.; Wang, Z.H.; Qiu, H. Deterioration of concrete fracture toughness and elastic modulus under simulated acid-sulfate environment. Constr. Build. Mater. 2018, 176, 490–499. [Google Scholar] [CrossRef]
- Fan, Y.F.; Luan, H.Y. Pore structure in concrete exposed to acid deposit. Constr. Build. Mater. 2013, 49, 407–416. [Google Scholar] [CrossRef]
- Wang, K.; Yu, L.N.; Chen, M.C. Deterioration of Concrete Due to Acid Rain Attack in North China. In Construction and Urban Planning; Huang, Y., Bao, T., Wang, H., Eds.; Trans Tech Publications, Ltd.: Bach, Switzerland, 2013; pp. 1676–1679. [Google Scholar]
- Kanazu, T.; Matsumura, T.; Nishiuchi, T.; Yamamoto, T. Effect of simulated acid rain on deterioration of concrete. Water Air Soil Pollut. 2001, 130, 1481–1486. [Google Scholar] [CrossRef]
- Dias, C.M.R.; Cincotto, M.A.; Savastano, H.; John, V.M. Long-term aging of fiber-cement corrugated sheets—The effect of carbonation, leaching and acid rain. Cem. Concr. Compos. 2008, 30, 255–265. [Google Scholar] [CrossRef]
- Derry, D.J.; Malati, M.A.; Pullen, J.C. Effects of atmospheric acids on Portland cements. J. Chem. Technol. Biotechnol. 2001, 76, 1049–1056. [Google Scholar] [CrossRef]
- Gay, H.; Meynet, T.; Colombani, J. Local study of the corrosion kinetics of hardened Portland cement under acid attack. Cem. Concr. Res. 2016, 90, 36–42. [Google Scholar] [CrossRef]
- Guo, H.F.; Song, Z.G.; Yang, S.Y. Corrosion of Permeable Concrete under Simulated Acid Rain. In Novel and Non-Conventional Materials and Technologies for Sustainability; Xiao, Y., Li, Z., Wang, R., Shan, B., Ghavami, K., Eds.; Trans Tech Publications, Ltd.: Bach, Switzerland, 2012; pp. 352–356. [Google Scholar]
- Fan, Y.F.; Hu, Z.Q.; Zhang, Y.Z. Deterioration of compressive property of concrete under simulated acid rain environment. Constr. Build. Mater. 2010, 24, 1975–1983. [Google Scholar] [CrossRef]
- Zivica, V.; Krizma, M. Acidic-resistant slag cement. Mag. Concr. Res. 2013, 65, 1073–1080. [Google Scholar] [CrossRef]
- Estokova, A.; Kovalcikova, M. Application of Silica Fume as Waste Material in Cement Composites Exposed to Hydrochloric Acid. In Proceedings of the Geoconference on Ecology, Economics, Education and Legislation, Albena, Bulgaria, 19–25 June 2014; Volume I, pp. 23–30. [Google Scholar]
- Mahdikhani, M.; Bamshad, O.; Shirvani, M.F. Mechanical properties and durability of concrete specimens containing nano silica in sulfuric acid rain condition. Constr. Build. Mater. 2018, 167, 929–935. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003, 33, 1607–1611. [Google Scholar] [CrossRef]
- Lu, C.F.; Wang, W.; Zhou, Q.S.; Wei, S.H.; Wang, C. Mechanical behavior degradation of recycled aggregate concrete after simulated acid rain spraying. J. Clean. Prod. 2020, 262, 121237. [Google Scholar] [CrossRef]
- Preetham, R.; Krishna, R.H.; Chandraprabha, M.N.; Thomas, T. Vehicular soot for improvement of chemical stability of cement composites towards acid rain and sewage like atmospheres. Constr. Build. Mater. 2020, 248, 118604. [Google Scholar] [CrossRef]
- Sersale, R.; Frigione, G.; Bonavita, L. Acid deposition and concrete attack: Main influences. Cem. Concr. Res. 1998, 28, 19–24. [Google Scholar] [CrossRef]
- National Standard of the People’s Republic of China. Technical Specification for Pervious Cement Concrete Pavement; CJJ/T135-2009; Ministry of Housing and Urban-Rural Development of P.R.: Beijing, China, 2012.
- National Standard of the People’s Republic of China. Standard for Test Method of Mechanical Properties on Ordinary Concrete; GB/T 50081-2019; Ministry of Housing and Urban-Rural Development of P.R.: Beijing, China, 2012.
- National Standard of the People’s Republic of China. Test Methods of Cement and Concrete for Highway Engineering; JTG E3420-2020; Ministry of Transport of the P.R.: Beijing, China, 2020.
- Sotiriadis, K.; Nikolopoulou, E.; Tsivilis, S. Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature. Cem. Concr. Compos. 2012, 34, 903–910. [Google Scholar] [CrossRef]
- Kejin, W.; Daniel, E.N.; Wilfrid, A.N. Damaging effects of deicing chemicals on concrete materials. Cem. Concr. Compos. 2006, 28, 173–188. [Google Scholar]
- Hammad, A.K.; Arnaud, C.; Mohammad, S.H.K.; Aziz, H.M. Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid. Cem. Concr. Res. 2019, 124, 105852. [Google Scholar]
- Anaïs, G.; Patrick, D.; Marielle, G.M.; Thierry, C. Modelling of the sulfuric acid attack on different types of cementitious materials. Cem. Concr. Res. 2018, 105, 126–133. [Google Scholar]
- Chen, J.J.; Fung, W.W.S.; Kwan, A.K.H. Effects of CSF on strength, rheology and cohesiveness of cement paste. Constr. Build. Mater. 2012, 35, 979–987. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Thomas Telford Publishing: London, UK, 1997. [Google Scholar]
- Bassuoni, M.T.; Nehdi, M.L. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 2007, 37, 1070–1084. [Google Scholar] [CrossRef]
- Davis, J.L.; Nica, D.; Shields, K.; Roberts, D.J. Analysis of concrete from corroded sewer pipe. Int. Biodeterior. Biodegr. 1998, 42, 75–84. [Google Scholar] [CrossRef]
- Mori, T.; Nonaka, T.; Tazaki, K.; Koga, M.; Hikosaka, Y.; Noda, S. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water Res. 1992, 26, 29–37. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Han, Y.D.; Sun, W. Shrinkage and Interior Humidity of Concrete under Dry–Wet Cycles. Dry. Technol. 2012, 30, 583–596. [Google Scholar] [CrossRef]
- Bertron, A.; Duchesne, J.; Escadeillas, G. Accelerated tests of hardened cement pastes alteration by organic acids: Analysis of the pH effect. Cem. Concr. Res. 2005, 35, 155–166. [Google Scholar] [CrossRef]
- Oueslati, O.; Duchesne, J. The effect of SCMs and curing time on resistance of mortars subjected to organic acids. Cem. Concr. Res. 2012, 42, 205–214. [Google Scholar] [CrossRef]
- Chiara, F.F.; Karthik, H.O.; Russell, H. The influence of mineral admixtures on the rheology of cement paste and concrete. Cem. Concr. Res. 2001, 31, 245–255. [Google Scholar]
- Adil, G.; Kevern, J.T.; Mann, D. Influence of silica fume on mechanical and durability of pervious concrete. Constr. Build. Mater. 2020, 247, 118453. [Google Scholar] [CrossRef]
- Alessandra, B.; Filippo, G.; Maurizio, C. Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Constr. Build. Mater. 2015, 91, 102–110. [Google Scholar]
- Zhang, W.M.; Li, H.H.; Zhang, Y.C. Effect of porosity on frost resistance of Portland cement pervious concrete. Adv. Concr. Constr. 2018, 6, 363–373. [Google Scholar]
- Zhang, Y.B.; Zhang, W.M.; Zhang, Y.C. Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete. Adv. Concr. Constr. 2019, 8, 47–54. [Google Scholar]
- Yuwadee, Z.; Vanchai, S.; Ampol, W.; Prinya, C. Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Constr. Build. Mater. 2016, 111, 15–21. [Google Scholar]
- Senhadji, Y.; Escadeillas, G.; Mouli, M.; Khelafi, H. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol. 2014, 254, 314–323. [Google Scholar] [CrossRef]
- Maguesvari, M.U.; Narasimha, V.L. Studies on Characterization of Pervious Concrete for Pavement Applications. Proced. Soc. Behav. Sci. 2013, 104, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.L.; Shen, W.G.; Huo, X.J. Investigation on the properties of porous concrete as road base material. Constr. Build. Mater. 2018, 158, 141–148. [Google Scholar] [CrossRef]
- Fattuhi, N.I.; Hughes, B.P. The performance of cement paste and concrete subjected to sulphuric acid attack. Cem. Concr. Res. 1988, 18, 545–553. [Google Scholar] [CrossRef]
- Lei, G.; Phillip, V.; Terry, B. Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes. Cem. Concr. Compos. 2018, 87, 187–204. [Google Scholar]
- Nežerka, V.; Bílý, P.; Hrbek, V.; Fládr, J. Impact of silica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete. Cem. Concr. Compos. 2019, 103, 252–262. [Google Scholar] [CrossRef]
- Merchanta, I.J.; Macpheeb, D.E.; Chandlera, H.W.; Henderson, R.J. Toughening cement-based materials through the control of interfacial bonding. Cem. Concr. Res. 2001, 31, 1873–1880. [Google Scholar] [CrossRef]
- Bu, J.; Tian, Z.; Zheng, S.; Tang, Z. Effect of sand content on strength and pore structure of cement mortar. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2017, 32, 382–390. [Google Scholar] [CrossRef]
- Zampini, D.; Jennings, H.M.; Shah, S.P. Characterization of the paste aggregate interfacial zone to the fracture toughness of concrete. J. Mater. Sci. 1995, 30, 3149–3154. [Google Scholar] [CrossRef]
- Amparano, F.E.; Xi, Y.; Roh, Y.S. Experimental study on the effect of aggregate content on fracture behavior of concrete. Eng. Fract. Mech. 2000, 67, 65–84. [Google Scholar] [CrossRef]
- Belkacem, B.; Madani, B.; Khadra, B.; Michele, Q. Effect of the type of sand on the fracture and mechanical properties of sand concrete. Adv. Concrete Constr. 2014, 2, 13–27. [Google Scholar]
- Wu, D.; Liu, X.; Wu, X.Q. Effect of forming method and sand ratio on performance of pervious concrete. Concrete 2009, 5, 100–102. [Google Scholar]
- Zaetang, Y.; Wongsa, A.; Sata, V.; Chindaprasirt, P. Influence of mineral additives on the properties of pervious concrete. Ind. J. Eng. Mater. Sci. 2017, 24, 507–515. [Google Scholar]
- Chougan, M.; Ghaffar, S.H.; Sikora, P.; Chung, S.Y.; Swash, M.R. Investigation of additive incorporation on rheological, microstructural and mechanical properties of 3d printable alkali-activated materials. Mater. Des. 2021, 202, 109574. [Google Scholar] [CrossRef]
- Lamastra, F.R.; Chougan, M.; Marotta, E.; Ciattini, S.; Bianco, A. Toward a better understanding of multifunctional cement-based materials: The impact of graphite nanoplatelets (GNPs). Ceram. Int. 2021. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | TiO2 |
---|---|---|---|---|---|---|---|---|
23.1 | 7.11 | 3.69 | 57.57 | 2.20 | 2.67 | 2.16 | 0.73 | 0.33 |
Water (kg/m3) | Cement (kg/m3) | Coarse Aggregate (kg/m3) | Fine Aggregate (kg/m3) | Silica Fume (kg/m3) | SP (kg/m3) | Void Ratio (%) | |
---|---|---|---|---|---|---|---|
Control PCPC | 116 | 415 | 1453 | 0 | 0 | 4.15 | 18.5 |
4%SF PCPC | 116 | 398.4 | 1453 | 0 | 16.6 | 4.15 | 20.1 |
8%FAG PCPC | 116 | 415 | 1336.8 | 116.2 | 0 | 4.15 | 15.3 |
Cube 100 mm × 100 mm × 100 mm | Prism 100 mm × 100 mm × 400 mm | Cube 150 mm × 150 mm × 150 mm | |
---|---|---|---|
Control PCPC | 27 | 27 | 3 |
4%SF PCPC | 27 | 15 | 3 |
8%FAG PCPC | 15 | 15 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Lai, Y.; Islam Pramanic, M.R.; Zhang, W. Deterioration of Portland Cement Pervious Concrete in Sponge Cities Subjected to Acid Rain. Materials 2021, 14, 2670. https://doi.org/10.3390/ma14102670
Gao L, Lai Y, Islam Pramanic MR, Zhang W. Deterioration of Portland Cement Pervious Concrete in Sponge Cities Subjected to Acid Rain. Materials. 2021; 14(10):2670. https://doi.org/10.3390/ma14102670
Chicago/Turabian StyleGao, Longxin, Yong Lai, Mohammad Rashadul Islam Pramanic, and Wuman Zhang. 2021. "Deterioration of Portland Cement Pervious Concrete in Sponge Cities Subjected to Acid Rain" Materials 14, no. 10: 2670. https://doi.org/10.3390/ma14102670
APA StyleGao, L., Lai, Y., Islam Pramanic, M. R., & Zhang, W. (2021). Deterioration of Portland Cement Pervious Concrete in Sponge Cities Subjected to Acid Rain. Materials, 14(10), 2670. https://doi.org/10.3390/ma14102670