Bio-Based Crosslinked Polymers Synthesized from Functionalized Soybean Oil and Squalene by Thiol–Ene UV Curing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hexathiolated Squalene (SQ6SH)
2.3. Preparation of Crosslinked Polymers
2.4. Characterization
3. Results and Discussion
3.1. Photopolymerization Kinetics
3.2. Characterization of the Crosslinked Polymer Structure
3.3. Thermal Properties of the Polymers
3.4. Hardness of the Polymers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y. Discussion on the Development of Green Chemistry and Chemical Engineering. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 3rd International Conference on Energy, Environment and Materials Science (EEMS 2017), Singapore, 28–30 July 2017; Volume 94, p. 012136. [Google Scholar] [CrossRef] [Green Version]
- Aparecida de Marco, B.; Saú Rechelo, B.; Gandolpho Tótoli, E.; Kogawa, A.C.; Nunes Salgado, H.R. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J. 2019, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Santos, T.; Duarte, A.C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC Trends Anal. Chem. 2015, 65, 47–53. [Google Scholar] [CrossRef]
- Papageorgiou, G. Thinking green: Sustainable polymers from renewable resources. Polymers 2018, 10, 952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.M.; Moxon, S.; Morris, G.A. Biopolymers as wound healing materials. In Wound Healing Biomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 261–287. [Google Scholar]
- Skliutas, E.; Lebedevaite, M.; Kasetaite, S.; Rekštytė, S.; Lileikis, S.; Ostrauskaite, J.; Malinauskas, M. A Bio-Based Resin for a Multi-Scale Optical 3D Printing. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Navaruckiene, A.; Skliutas, E.; Kasetaite, S.; Rekštytė, S.; Raudoniene, V.; Bridziuviene, D.; Malinauskas, M.; Ostrauskaite, J. Vanillin Acrylate-Based Resins for Optical 3D Printing. Polymers 2020, 12, 397. [Google Scholar] [CrossRef] [Green Version]
- Lebedevaite, M.; Talacka, V.; Ostrauskaite, J. High biorenewable content acrylate photocurable resins for DLP 3D printing. J Appl. Polym. Sci. 2021, 138, e50233. [Google Scholar] [CrossRef]
- Noè, C.; Hakkarainen, M.; Sangermano, M. Cationic UV-Curing of Epoxidized Biobased Resins. Polymers 2021, 13, 89. [Google Scholar] [CrossRef]
- Yadav, S.K.; Schmalbach, K.M.; Kinaci, E.; Stanzione, J.F.; Palmese, G.R. Recent Advances in Plant-Based Vinyl Ester Resins and Reactive Diluents. Eur. Polym. J. 2018, 98, 199–215. [Google Scholar] [CrossRef]
- Lebedevaite, M.; Ostrauskaite, J.; Skliutas, E.; Malinauskas, M. Photoinitiator free Resins Composed of Plant-Derived Monomers for the Optical μ-3D Printing of Thermosets. Polymers 2019, 11, 116. [Google Scholar] [CrossRef] [Green Version]
- Lebedevaite, M.; Ostrauskaite, J.; Skliutas, E.; Malinauskas, M. Photocross-Linked polymers based on plant-derived monomers for potential application in optical 3D printing. J. Appl. Polym. Sci. 2020, 137, 48708. [Google Scholar] [CrossRef]
- Miezinyte, G.; Ostrauskaite, J.; Rainosalo, E.; Skliutas, E.; Malinauskas, M. Photoresins based on acrylated epoxidized soybean oil and benzenedithiols for optical 3D printing. Rapid Prototyp. J. 2019, 25, 378–387. [Google Scholar] [CrossRef]
- Wang, C.; Ding, L.; He, M.; Wei, J.; Li, J.; Lu, R.; Xie, H.; Cheng, R. Facile one-step synthesis of bio-based AESO resins. Eur. J. Lipid Sci. Technol. 2016, 118, 1463–1469. [Google Scholar] [CrossRef]
- Resetco, C.; Hendriks, B.; Badi, N.; Du Prez, F. Thiol–Ene chemistry for polymer coatings and surface modification—Building in sustainability and performance. Mater. Horiz. 2017, 4, 1041–1053. [Google Scholar] [CrossRef]
- Konuray, O.; Fernández-Francos, X.; Ramis, X.; Serra, À. State of the Art in Dual-Curing Acrylate Systems. Polymers 2018, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Grauzeliene, S.; Navaruckiene, A.; Skliutas, E.; Malinauskas, M.; Serra, A.; Ostrauskaite, J. Vegetable Oil-Based Thiol-Ene/Thiol-Epoxy Resins for Laser Direct Writing 3D Micro-/Nano-Lithography. Polymers 2021, 13, 872. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, G.; Cui, Y.; Tian, J.; He, M.; Yang, J.W. Castor Oil Based Biothiol as a Highly Stable and Self-Initiated Oligomer for Photoinitiator-Free UV Coatings. ACS Sustain. Chem. Eng. 2017, 5, 376–381. [Google Scholar] [CrossRef]
- Chen, Z.; Chisholm, B.J.; Patani, R.; Wu, J.F.; Fernando, S.; Jogodzinski, K.; Webster, D.C. Soy-Based UV-curable thiol–ene coatings. J. Coat. Technol. Res. 2010, 7, 603–613. [Google Scholar] [CrossRef]
- Kim, S.S.; Ha, H.; Ellison, C.J. Soybean Oil-Based Thermoset Films and Fibers with High Biobased Carbon Content via Thiol−Ene Photopolymerization. ACS Sustain. Chem. Eng. 2018, 6, 8364–8373. [Google Scholar] [CrossRef]
- Feng, Y.; Hu, Y.; Man, L.; Yuan, T.; Zhang, C.; Yang, Z. Biobased thiol-epoxy shape memory networks from gallic acid and vegetable oils. Eur. Polym. J. 2019, 112, 619–628. [Google Scholar] [CrossRef]
- Guzmán, D.; Mateu, B.; Fernández-Francos, X.; Ramis, X.; Serra, A. Novel thermal curing of cycloaliphatic resins by thiol–epoxy click process with several multifunctional thiols. Polym. Int. 2017, 66, 1697–1707. [Google Scholar] [CrossRef]
- Şeker, H.; Çakmakçi, E. Fully bio-based thiol-ene photocured thermosets from isosorbide and tung oil. J. Polym. Sci. 2020, 58, 1105–1114. [Google Scholar] [CrossRef]
- Acosta Ortiz, R.; Obregón Blandón, E.A.; Guerrero Santos, R. Synthesis of Novel Hexathiolated Squalene and Its Thiol-Ene Photopolymerization with Unsaturated Monomers. Green Sustain. Chem. 2012, 2, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Grande, M.A.; Gorinstein, S.; Espitia-Rangel, E.; Dávila-Ortiz, G.; Martínez-Ayala, A.L. Plant Sources, Extraction Methods, and Uses of Squalene. Int. J. Agron. 2018, 2018. [Google Scholar] [CrossRef]
- Popa, O.; Băbeanu, N.E.; Popa, I.; Niță, S.; Dinu-Pârvu, C.E. Methods for Obtaining and Determination of Squalene from Natural Sources. BioMed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Rosales-García, T.; Jimenez-Martinez, C.; Dávila-Ortiz, G. Squalene Extraction: Biological Sources and Extraction Methods. IJEAB 2017, 2, 1662–1670. [Google Scholar] [CrossRef]
- Kasetaite, S.; De la Flor, S.; Serra, A.; Ostrauskaite, J. Effect of Selected Thiols on Cross-Linking of Acrylated Epoxidized Soybean Oil and Properties of Resulting Polymers. Polymers 2018, 10, 439. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Liu, J.; Wu, Y.; Liu, J.; Cheng, F.; Jiao, X.; Lai, G. Fabrication of UV-curable solvent-free epoxy modified silicone resin coating with high transparency and low volume shrinkage. Prog. Org. Coat. 2019, 129, 96–100. [Google Scholar] [CrossRef]
- Doğruyol, Z.; Arsu, N.; Doğruyol, S.K.; Pekcan, Ö. Producing critical exponents from gelation for various photoinitiator concentrations; a photo differential scanning calorimetric study. Prog. Org. Coat. 2012, 74, 181–185. [Google Scholar] [CrossRef]
- Meereis, C.; Leal, F.; Lima, G.; Carvalho, R.; Piva, E.; Ogliari, F. BAPO as an alternative photoinitiator for the radical polymerization of dental resins. Dent. Mater. 2014, 30, 945–953. [Google Scholar] [CrossRef]
- He, Y.; Yao, M.; Nie, J. Protective Coatings, Anonymous; Springer: Berlin, Germany, 2017; p. 195. [Google Scholar]
- Doğruyol, Z.; Karasu, F.; Temel, G.; Balta, D.; Aydın, M.; Keskin, S.; Pekcan, Ö.; Arsu, N. Basics and Applications of Photopolymerization Reactions; Chapter XI; Research Signpost: Kerala, India, 2010. [Google Scholar]
- Chen, Z.; Wu, J.F.; Fernando, S.; Jagodzinski, K. Soy-based, high biorenewable content UV curable coatings. Prog. Org. Coat. 2011, 71, 98–109. [Google Scholar] [CrossRef]
- Ligon-Auer, S.C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: A review. Polym. Chem. 2016, 7, 257–286. [Google Scholar] [CrossRef]
- Guzmán, D.; Ramis, X.; Fernández-Francos, X.; De la Flor, S.; Serra, A. New bio-based materials obtained by thiol-ene/thiol-epoxy dual curing click procedures from eugenol derivates. Eur. Polym. J. 2017, 93, 530–544. [Google Scholar] [CrossRef]
- Nagai, A.; Kamei, Y.; Wang, X.; Omura, M.; Sudo, A.; Nishida, H.; Kawamoto, E.; Endo, T. Synthesis and Crosslinking Behavior of a Novel Linear Polymer Bearing 1, 2, 3-triazol and Benzoxazine Groups in the Main Chain by a Step-growth Click-coupling Reaction. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 2316–2325. [Google Scholar] [CrossRef]
Resin | Storage Modulus G′ (MPa) | Loss Modulus G″ (MPa) | Complex Viscosity η* (MPa·s) | Shrinkage (%) |
---|---|---|---|---|
1HMP | 1.41 ± 0.02 | 0.13 ± 0.02 | 228.0 ± 1.0 | 3.0 ± 0.0 |
2HMP | 1.71 ± 0.01 | 0.23 ± 0.01 | 274.0 ± 0.5 | 5.0 ± 0.0 |
3HMP | 2.54 ± 0.02 | 0.41 ± 0.01 | 409.5 ± 1.5 | 3.0 ± 0.0 |
4HMP | 2.03 ± 0.02 | 0.32 ± 0.01 | 326.5 ± 3.5 | 3.5 ± 0.5 |
5HMP | 2.95 ± 0.02 | 0.48 ± 0.01 | 475.0 ± 2.0 | 2.5 ± 0.5 |
1TPOL | 1.78 ± 0.02 | 0.19 ± 0.00 | 285.5 ± 1.5 | 3.5 ± 0.5 |
2TPOL | 2.61 ± 0.02 | 0.36 ± 0.01 | 419.5 ± 2.5 | 5.0 ± 0.0 |
3TPOL | 2.67 ± 0.00 | 0.38 ± 0.00 | 428.5 ± 1.5 | 4.0 ± 0.0 |
4TPOL | 2.05 ± 0.00 | 0.27 ± 0.00 | 330.0 ± 0.5 | 6.5 ± 0.5 |
5TPOL | 2.41 ± 0.01 | 0.32 ± 0.01 | 388.0 ± 1.0 | 6.0 ± 0.0 |
Polymer | Yield of Insoluble Fraction a (%) | Tg b (°C) | Tdec.−5% c (°C) | Tdec.−10% d (°C) | Tmax e (°C) | Char Residue f (%) |
---|---|---|---|---|---|---|
1HMP | 68 | −20 | 305 | 333 | 450 | 1.1 |
2HMP | 85 | −6 | 309 | 333 | 447 | 1.2 |
3HMP | 90 | −7 | 306 | 330 | 452 | 0.9 |
4HMP | 88 | −9 | 300 | 331 | 456 | 0.5 |
5HMP | 87 | −11 | 303 | 331 | 448 | 0.9 |
1TPOL | 93 | −1 | 314 | 340 | 447 | 1.2 |
2TPOL | 97 | −1 | 316 | 342 | 449 | 1.1 |
3TPOL | 98 | 0 | 322 | 344 | 448 | 1.2 |
4TPOL | 97 | −2 | 313 | 340 | 449 | 0.9 |
5TPOL | 96 | −2 | 305 | 334 | 446 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grauzeliene, S.; Valaityte, D.; Motiekaityte, G.; Ostrauskaite, J. Bio-Based Crosslinked Polymers Synthesized from Functionalized Soybean Oil and Squalene by Thiol–Ene UV Curing. Materials 2021, 14, 2675. https://doi.org/10.3390/ma14102675
Grauzeliene S, Valaityte D, Motiekaityte G, Ostrauskaite J. Bio-Based Crosslinked Polymers Synthesized from Functionalized Soybean Oil and Squalene by Thiol–Ene UV Curing. Materials. 2021; 14(10):2675. https://doi.org/10.3390/ma14102675
Chicago/Turabian StyleGrauzeliene, Sigita, Deimante Valaityte, Greta Motiekaityte, and Jolita Ostrauskaite. 2021. "Bio-Based Crosslinked Polymers Synthesized from Functionalized Soybean Oil and Squalene by Thiol–Ene UV Curing" Materials 14, no. 10: 2675. https://doi.org/10.3390/ma14102675
APA StyleGrauzeliene, S., Valaityte, D., Motiekaityte, G., & Ostrauskaite, J. (2021). Bio-Based Crosslinked Polymers Synthesized from Functionalized Soybean Oil and Squalene by Thiol–Ene UV Curing. Materials, 14(10), 2675. https://doi.org/10.3390/ma14102675