RE-Based Inorganic-Crystal Nanofibers Produced by Electrospinning for Photonic Applications
Abstract
:1. Introduction
2. Rare Earth Ions in Ionic Crystals
3. The Electrospinning Technique
- (1)
- preparation of a suitable solution based on polymer and inorganic salt;
- (2)
- electrospinning of this solution to obtain polymer precursor fibers;
- (3)
- high temperature calcination of the precursor fibers to dissolve the polymer matrix and obtain crystallization of the material.
4. Electrospun Rare Earth Doped Crystal Fibers
4.1. Electrospun Fibers with Stokes Emissions
4.2. Electrospun Fibers with Anti-Stokes Emissions
5. Applications
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Zhang, W.; Xie, E.; Ma, Z.; Zhao, A.; Liu, Z. Structure and photoluminescence of β-Ga2O3:Eu3+ nanofibers prepared by electrospinning. Appl. Surf. Sci. 2011, 257, 4968–4972. [Google Scholar] [CrossRef]
- Pisignano, D. Polymer Nanofibers Building Blocks for Nanotechnology; RSC Publishing: Cambridge, UK, 2013; ISBN 978-1-84973-774-6. [Google Scholar]
- Persano, L.; Camposeo, A.; Pisignano, D. Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog. Polym. Sci. 2015, 43, 48–95. [Google Scholar] [CrossRef]
- Angammana, C.J.; Jayaram, S.H. Fundamentals of electrospinning and processing technologies. Part. Sci. Technol. 2016, 34, 72–82. [Google Scholar] [CrossRef]
- Mirjalili, M.; Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostruct. Chem. 2016, 6, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Pan, W.; Lin, D.; Li, H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J. Adv. Ceram. 2012, 1, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Denker, B.; Shklovsky, E. Handbook of Solid-State Lasers: Materials, Systems and Applications; Woodhead Publishing series in electronic and optical materials; Woodhead Publishing: Cambridge, UK; Philadelphia, PA, USA, 2013; ISBN 978-0-85709-272-4. [Google Scholar]
- Kaminskiĭ, A.A. Crystalline Lasers: Physical Processes and Operating Schemes; The CRC Press laser and optical science and technology series; CRC Press: Boca Raton, FL, USA, 1996; ISBN 978-0-8493-3720-8. [Google Scholar]
- Cornacchia, F.; Toncelli, A.; Tonelli, M. 2-μm lasers with fluoride crystals: Research and development. Prog. Quantum Electron. 2009, 33, 61–109. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H.; Sun, S.; Li, X.; Zhou, Y.; Hou, Z.; Lin, J. Multifunctional Hydroxyapatite/Na(Y/Gd)F4:Yb3+, Er3+ Composite Fibers for Drug Delivery and Dual Modal Imaging. Langmuir 2014, 30, 1176–1182. [Google Scholar] [CrossRef]
- Li, D.; Ma, Q.; Song, Y.; Xi, X.; Dong, X.; Yu, W.; Wang, J.; Liu, G. A novel strategy to achieve NaGdF4:Eu3+ nanofibers with color-tailorable luminescence and paramagnetic performance. J. Am. Ceram. Soc. 2017, 100, 2034–2044. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Zhang, H.-D.; Yan, X.; Zhao, A.-J.; Zhang, Z.-G.; Si, W.-Y.; Gong, M.-G.; Zhang, J.-C.; Long, Y.-Z. Effect of Ce doping on the optoelectronic and sensing properties of electrospun ZnO nanofibers. RSC Adv. 2016, 6, 85727–85734. [Google Scholar] [CrossRef]
- Wilhelm, S. Perspectives for Upconverting Nanoparticles. ACS Nano 2017, 11, 10644–10653. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, D.; Ma, Q.; Dong, X.; Xi, X.; Yu, W.; Wang, X.; Wang, J.; Liu, G. Er3+ doped BaYF5 nanofibers: Facile construction technique, structure and upconversion luminescence. J. Mater. Sci. Mater. Electron. 2016, 27, 5277–5283. [Google Scholar] [CrossRef]
- Chen, Z.; Trofimov, A.A.; Jacobsohn, L.G.; Xiao, H.; Kornev, K.G.; Xu, D.; Peng, F. Permeation and optical properties of YAG:Er3+ fiber membrane scintillators prepared by novel sol–gel/electrospinning method. J. Sol. Gel. Sci. Technol. 2017, 83, 35–43. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Gradys, A.; Kim, S.K.; Persano, L.; Marzec, M.; Kryshtal, A.; Busolo, T.; Toncelli, A.; Pisignano, D.; Bernasik, A.; et al. Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Appl. Mater. Interfaces 2020, 12, 13575–13583. [Google Scholar] [CrossRef]
- Li, D.; Ma, Q.; Song, Y.; Xi, X.; Dong, X.; Yu, W.; Wang, J.; Liu, G. Tunable multicolor luminescence and white light emission realized in Eu3+ mono-activated GdF3 nanofibers with paramagnetic performance. RSC Adv. 2016, 6, 113045–113052. [Google Scholar] [CrossRef]
- Xi, X.; Ma, Q.; Dong, X.; Wang, J.; Yu, W.; Liu, G. Flexible Janus Nanofiber to Help Achieve Simultaneous Enhanced Magnetism-Upconversion Luminescence Bifunction. IEEE Trans. Nanotechnol. 2015, 14, 243–249. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Magnetic-upconversion luminescent bifunctional flexible coaxial nanoribbon and Janus nanoribbon: One-pot electrospinning preparation, structure and enhanced upconversion luminescent characteristics. Chem. Eng. J. 2015, 260, 222–230. [Google Scholar] [CrossRef]
- Li, D.; Dong, X.; Yu, W.; Wang, J.; Liu, G. Fabrication and luminescence of YF3:Tb3+ hollow nanofibers. J. Mater. Sci. Mater. Electron. 2013, 24, 3041–3048. [Google Scholar] [CrossRef]
- Sun, B.; Long, Y.Z.; Zhang, H.D.; Li, M.M.; Duvail, J.L.; Jiang, X.Y.; Yin, H.L. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog. Polym. Sci. 2014, 39, 862–890. [Google Scholar] [CrossRef]
- Kaerkitcha, N.; Chuangchote, S.; Sagawa, T. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends. Nanoscale Res. Lett. 2016, 11, 186. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Yu, W.; Dong, X.; Yang, M.; Wang, J.; Liu, G. Flexible Tricolor Flag-liked Microribbons Array with Enhanced Conductive Anisotropy and Multifunctionality. Sci. Rep. 2015, 5, 14583. [Google Scholar] [CrossRef] [Green Version]
- Burger, C.; Hsiao, B.S.; Chu, B. Nanofibrous Materials and Their Applications. Annu. Rev. Mater. Res. 2006, 36, 333–368. [Google Scholar] [CrossRef]
- Loscertales, I.G. Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets. Science 2002, 295, 1695–1698. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.E.; Barrero, A.; Márquez, M.; Loscertales, I.G. Controlled Encapsulation of Hydrophobic Liquids in Hydrophilic Polymer Nanofibers by Co-electrospinning. Adv. Funct. Mater. 2006, 16, 2110–2116. [Google Scholar] [CrossRef]
- Li, D.; Yu, W.; Dong, X.; Wang, J.; Liu, G. Synthesis and luminescence properties of YF3:Eu3+ hollow nanofibers via the combination of electrospinning with fluorination technique. J. Fluor. Chem. 2013, 145, 70–76. [Google Scholar] [CrossRef]
- Hou, Z.; Chai, R.; Zhang, M.; Zhang, C.; Chong, P.; Xu, Z.; Li, G.; Lin, J. Fabrication and Luminescence Properties of One-Dimensional CaMoO4:Ln3+ (Ln = Eu, Tb, Dy) Nanofibers via Electrospinning Process. Langmuir 2009, 25, 12340–12348. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Z.; Ye, F. Properties of a novel Ba5Si8O21:Eu2+,Nd3+ phosphor: Bulk and 1D nanostructure with PVP synthesized by sol-gel and electrospinning. J. Alloy. Compd. 2017, 712, 213–218. [Google Scholar] [CrossRef]
- Liu, Z.; Yuwen, M.; Liu, J.; Yu, C.; Xuan, T.; Li, H. Electrospinning, optical properties and white LED applications of one-dimensional CaAl12O19:Mn4+ nanofiber phosphors. Ceram. Int. 2017, 43, 5674–5679. [Google Scholar] [CrossRef]
- Ye, F.; Dong, S.; Tian, Z.; Yao, S.; Zhou, Z.; Wang, S. Fabrication and characterization of long-persistent luminescence/polymer (Ca2MgSi2O7:Eu2+, Dy3+/PLA) composite fibers by electrospinning. Opt. Mater. 2015, 45, 64–68. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Q.; Wang, H.; Li, Y. CaSi2O2N2:Eu nanofiber mat based on electrospinning: Facile synthesis, uniform arrangement, and application in white LEDs. J. Mater. Chem. 2011, 21, 17790. [Google Scholar] [CrossRef]
- Dong, G.; Xiao, X.; Liu, X.; Qian, B.; Ma, Z.; Chen, D.; Qiu, J. Preparation and Optical Properties of Long Afterglow Europium-Doped Ca(Sr)Al2Si2O8 Electrospun Nanofibers. J. Electrochem. Soc. 2009, 156, J356. [Google Scholar] [CrossRef]
- Dong, G.; Xiao, X.; Zhang, L.; Ma, Z.; Bao, X.; Peng, M.; Zhang, Q.; Qiu, J. Preparation and optical properties of red, green and blue afterglow electrospun nanofibers. J. Mater. Chem. 2011, 21, 2194–2203. [Google Scholar] [CrossRef]
- Peng, C.; Li, G.; Kang, X.; Li, C.; Lin, J. The fabrication of one-dimensional Ca4Y6(SiO4)6O:Ln3+ (Ln=Eu, Tb) phosphors by electrospinning method and their luminescence properties. J. Colloid Interface Sci. 2011, 355, 89–95. [Google Scholar] [CrossRef]
- Peng, C.; Kang, X.; Li, G.; Hou, Z.; Li, C.; Lin, J. Fabrication and Luminescence Properties of Ca2RE8(SiO4)6O2:Pb2+,Dy3+ (RE = Y, Gd) One-Dimensional Phosphors by Electrospinning Method. J. Electrochem. Soc. 2011, 158, J208. [Google Scholar] [CrossRef]
- Hou, Z.; Li, C.; Yang, J.; Lian, H.; Yang, P.; Chai, R.; Cheng, Z.; Lin, J. One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: Electrospinning preparation and luminescent properties. J. Mater. Chem. 2009, 19, 2737. [Google Scholar] [CrossRef]
- Cui, Q.; Dong, X.; Wang, J.; Li, M. Direct fabrication of cerium oxide hollow nanofibers by electrospinning. J. Rare Earths 2008, 26, 664–669. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, Y.; Mellott, N.P.; Wang, B.; Ye, H.; Wu, Y. Luminescence of Delafossite-Type CuAlO2 Fibers with Eu Substitution for Al Cations. Sci. Technol. Adv. Mater. 2016, 17, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Y.; Yang, Y.; Wang, Y.; Zhao, Y.Y.; Li, X.; Wang, C. Luminescent Properties of Rare-Earth Oxyfluoride Nanofibers Prepared via Electrospinning. J. Nanosci. Nanotech. 2009, 9, 1522–1525. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, W.; Xie, E.; Liu, Z.; Feng, J.; Liu, Z. Photoluminescence properties of β-Ga2O3:Tb3+ nanofibers prepared by electrospinning. Mater. Sci. Eng. B 2011, 176, 932–936. [Google Scholar] [CrossRef]
- Du, P.; Song, L.; Xiong, J.; Xi, Z.; Jin, D.; Wang, L. Preparation and the luminescent properties of Tb3+ -doped Gd2O3 fluorescent nanofibers via electrospinning. Nanotechnology 2011, 22, 035602. [Google Scholar] [CrossRef]
- Yu, H.; Li, Y.; Song, Y.; Wu, Y.; Chen, B.; Li, P. Preparation and luminescent properties of Gd2O3:Eu3+ nanofibres made by electrospinning. Ceram. Int. 2016, 42, 1307–1313. [Google Scholar] [CrossRef]
- Wu, J.; Coffer, J.L. Emissive Erbium-Doped Silicon and Germanium Oxide Nanofibers Derived from an Electrospinning Process. Chem. Mater. 2007, 19, 6266–6276. [Google Scholar] [CrossRef]
- Li, X.; Yu, M.; Hou, Z.; Li, G.; Ma, P.; Wang, W.; Cheng, Z.; Lin, J. One-dimensional GdVO4:Ln3+ (Ln=Eu, Dy, Sm) nanofibers: Electrospinning preparation and luminescence properties. J. Solid State Chem. 2011, 184, 141–148. [Google Scholar] [CrossRef]
- Qin, C.; Qin, L.; Chen, G.; Lin, T. One-dimensional Eu3+ and Tb3+ doped LaBO3 nanofibers: Fabrication and improved luminescence performances. Mater. Lett. 2013, 106, 436–438. [Google Scholar] [CrossRef]
- Ma, W.; Dong, X.; Wang, J.; Yu, W.; Liu, G. Study on terbium doped lanthanum oxybromide luminescent nanoribbons and nanofibers. J. Mater. Sci. Mater. Electron. 2014, 25, 1657–1663. [Google Scholar] [CrossRef]
- Ma, W.; Dong, X.; Wang, J.; Yu, W.; Liu, G. Preparation of LaOBr:Er3+ Up-conversion Luminescent Nanobelts by Electrospinning Then Bromination. J. Elec. Mater. 2014, 43, 3701–3707. [Google Scholar] [CrossRef]
- Li, G.; Hou, Z.; Peng, C.; Wang, W.; Cheng, Z.; Li, C.; Lian, H.; Lin, J. Electrospinning Derived One-Dimensional LaOCl:Ln3+ (Ln = Eu/Sm, Tb, Tm) Nanofibers, Nanotubes and Microbelts with Multicolor-Tunable Emission Properties. Adv. Funct. Mater. 2010, 20, 3446–3456. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, L.; Lian, H.; Chai, R.; Zhang, C.; Cheng, Z.; Lin, J. Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning. J. Solid State Chem. 2009, 182, 698–708. [Google Scholar] [CrossRef]
- Song, K.; Li, G.-M. Electrospinning synthesis, characterization and luminescence properties of La2W2O9:Eu3+ nanofibers. J. Mater. Sci. Mater. Electron. 2016, 27, 1227–1231. [Google Scholar] [CrossRef]
- Li, X.; Yu, M.; Hou, Z.; Wang, W.; Li, G.; Cheng, Z.; Chai, R.; Lin, J. Preparation and luminescence properties of Lu2O3:Eu3+ nanofibers by sol–gel/electrospinning process. J. Colloid Interface Sci. 2010, 349, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zou, H.; Song, Y.; Guan, H.; Zhou, X.; Shi, Z.; Sheng, Y. Electrospinning fabrication and luminescence properties of Lu2O2S:Eu3+ fibers. Cryst. Eng. Comm. 2017, 19, 699–707. [Google Scholar] [CrossRef]
- Wu, J.; Coffer, J.L. Strongly Emissive Erbium-Doped Tin Oxide Nanofibers Derived from Sol Gel/Electrospinning Methods. J. Phys. Chem. C 2007, 111, 16088–16091. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, Y.; Zhang, Y.; Cao, X. Preparation of SrAl2O4:Eu2+,Dy3+ fibers by electrospinning combined with sol–gel process. J. Colloid Interface Sci. 2010, 344, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Dong, S.; Tian, Z.; Yao, S.; Zhou, Z.; Wang, S. Fabrication of the PLA/Sr2MgSi2O7:Eu2+,Dy3+ long-persistent luminescence composite fibers by electrospinning. Opt. Mater. 2013, 36, 463–466. [Google Scholar] [CrossRef]
- Li, C.-J.; Wang, J.-N. Electrospun SrRe0.6Fe11.4O19 magnetic nanofibers: Fabrication and characterization. Mater. Lett. 2010, 64, 586–588. [Google Scholar] [CrossRef]
- Hou, Z.; Cheng, Z.; Li, G.; Wang, W.; Peng, C.; Li, C.; Ma, P.; Yang, D.; Kang, X.; Lin, J. Electrospinning-derived Tb2(WO4)3:Eu3+ nanowires: Energy transfer and tunable luminescence properties. Nanoscale 2011, 3, 1568. [Google Scholar] [CrossRef]
- Bianco, A.; Cacciotti, I.; Fragalá, M.E.; Lamastra, F.R.; Speghini, A.; Piccinelli, F.; Malandrino, G.; Gusmano, G. Eu-Doped Titania Nanofibers: Processing, Thermal Behaviour and Luminescent Properties. J. Nanosci. Nanotechnol. 2010, 10, 5183–5190. [Google Scholar] [CrossRef] [PubMed]
- Cacciotti, I.; Bianco, A.; Pezzotti, G.; Gusmano, G. Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers. Chem. Eng. J. 2011, 166, 751–764. [Google Scholar] [CrossRef]
- Dong, G.; Xiao, X.; Chi, Y.; Qian, B.; Liu, X.; Ma, Z.; Ye, S.; Wu, E.; Zeng, H.; Chen, D.; et al. Polarized Luminescence Properties of TiO2:Sm3+ Microfibers and Microbelts Prepared by Electrospinning. J. Phys. Chem. C 2009, 113, 9595–9600. [Google Scholar] [CrossRef]
- Hassan, M.S.; Amna, T.; Yang, O.-B.; Kim, H.-C.; Khil, M.-S. TiO2 nanofibers doped with rare earth elements and their photocatalytic activity. Ceram. Int. 2012, 38, 5925–5930. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, B.-Y.; Cho, N.-I.; Oh, Y.-J. Electrospun Er3+–TiO2 nanofibrous films as visible light induced photocatalysts. Curr. Appl. Phys. 2011, 11, S324–S327. [Google Scholar] [CrossRef]
- Jia, C.W.; Zhao, J.G.; Duan, H.G.; Xie, E.Q. Visible photoluminescence from Er3+-doped TiO2 nanofibres by electrospinning. Mater. Lett. 2007, 61, 4389–4392. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Yang, Y.; Li, X.; Wang, C. Photoluminescence properties of the rare-earth ions in the TiO2 host nanofibers prepared via electrospinning. Mater. Res. Bull. 2009, 44, 408–414. [Google Scholar] [CrossRef]
- Zhao, J.; Jia, C.; Duan, H.; Sun, Z.; Wang, X.; Xie, E. Structural and Photoluminescence Properties of Europium-Doped Titania Nanofibers Prepared by Electrospinning Method. J. Alloy. Compd. 2008, 455, 497–500. [Google Scholar] [CrossRef]
- Wang, J.; An, X.; Yu, Y.; Li, X.; Ge, M. Er-Doped Titanium Dioxide/Silicon Dioxide Fibres with Enhanced Photodegradation Performance. Micro Nano Lett. 2018, 13, 297–301. [Google Scholar] [CrossRef]
- Hassan, M.S.; Amna, T.; Al-Deyab, S.S.; Kim, H.-C.; Oh, T.-H.; Khil, M.-S. Toxicity of Ce2O3/TiO2 composite nanofibers against S. aureus and S. typhimurium: A novel electrospun material for disinfection of food pathogens. Colloids Surf. A Physicochem. Eng. Asp. 2012, 415, 268–273. [Google Scholar] [CrossRef]
- Bi, F.; Dong, X.; Wang, J.; Liu, G. Facile Electrospinning Preparation and Up-Conversion Luminescence Performance of Y3Al5O12:Er3+,Yb3+ Nanobelts. J. Inorg. Organomet. Polym. 2014, 24, 407–415. [Google Scholar] [CrossRef]
- Bi, F.; Dong, X.; Wang, J.; Liu, G. Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts. Mat. Res. 2015, 18, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Bi, F.; Dong, X.; Wang, J.; Liu, G. Electrospinning preparation and photoluminescence properties of Y3Al5O12:Tb3+ nanostructures: Electrospinning preparation of Y3Al5O12:Tb3+ nanostructures. Luminescence 2015, 30, 751–759. [Google Scholar] [CrossRef]
- Bi, F.; Gai, G.; Dong, X.; Xiao, S.; Wang, J.; Liu, G.; Zhao, L.; Wang, L. Electrospinning preparation and photoluminescence properties of Y3Al5O12:Ce3+, Tb3+ nanobelts. J. Mater. Sci. Mater. Electron. 2017, 28, 4498–4505. [Google Scholar] [CrossRef]
- Bi, F.; Gai, G.; Dong, X.; Xiao, S.; Liu, G.; Zhao, L.; Wang, L. Facile electrospinning preparation and luminescence performance of color adjustable Y3Al5O12:Dy3+ nanobelts. J. Mater. Sci. Mater. Electron. 2017, 28, 10427–10432. [Google Scholar] [CrossRef]
- Dong, G.; Xiao, X.; Chi, Y.; Qian, B.; Liu, X.; Ma, Z.; Wu, E.; Zeng, H.; Chen, D.; Qiu, J. Size-dependent polarized photoluminescence from Y3Al5O12:Eu3+ single crystalline nanofiber prepared by electrospinning. J. Mater. Chem. 2010, 20, 1587. [Google Scholar] [CrossRef]
- Suryamas, A.B.; Munir, M.M.; Iskandar, F.; Okuyama, K. Photoluminescent and crystalline properties of Y3−xAl5O12:Cex3+ phosphor nanofibers prepared by electrospinning. J. Appl. Phys. 2009, 105, 064311. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, R.; Gong, Y. Preparation of electrospun YAG:Ce nanofiber-based phosphor layer for white LEDs application. Ceram. Int. 2016, 42, 4616–4620. [Google Scholar] [CrossRef]
- He, L.; Pan, L.; Li, W.; Dong, Q.; Sun, W. Spectral Response Characteristics of Eu3+ Doped YAG-Al2O3 Composite Nanofibers Reinforced Aluminum Matrix Composites. Opt. Mater. 2020, 104, 109845. [Google Scholar] [CrossRef]
- Song, H.; Yu, H.; Pan, G.; Bai, X.; Dong, B.; Zhang, X.T.; Hark, S.K. Electrospinning Preparation, Structure, and Photoluminescence Properties of YBO3:Eu3+ Nanotubes and Nanowires. Chem. Mater. 2008, 20, 4762–4767. [Google Scholar] [CrossRef]
- Dong, G.; Chi, Y.; Xiao, X.; Liu, X.; Qian, B.; Ma, Z.; Wu, E.; Zeng, H.; Chen, D.; Qiu, J. Fabrication and optical properties of Y2O3:Eu3+ nanofibers prepared by electrospinning. Opt. Express 2009, 17, 22514. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Pan, M.; Lv, Y.; Gu, Y.; Wang, X.; Li, D.; Kong, Q.; Dong, X. Fabrication of Y2O2S:Eu3+ hollow nanofibers by sulfurization of Y2O3:Eu3+ hollow nanofibers. J. Mater. Sci. Mater. Electron. 2015, 26, 677–684. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Qian, Q.; Liu, X.; Xiao, L.; Chen, Q. Preparation and Photoluminescence Characteristics of Tb-, Sm- and Dy-Doped Y2O3 Nanofibers by Electrospinning. J. Lumin. 2012, 132, 81–85. [Google Scholar] [CrossRef]
- Yu, H.; Song, H.; Pan, G.; Li, S.; Liu, Z.; Bai, X.; Wang, T.; Lu, S.; Zhao, H. Preparation and Luminescent Properties of Europium-Doped Yttria Fibers by Electrospinning. J. Lumin. 2007, 124, 39–44. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Z.; Quan, Z.; Li, C.; Yang, J.; Lian, H.; Yang, P.; Lin, J. One-Dimensional Ce3+- and/or Tb3+ -Doped X1-Y2SiO5 Nanofibers and Microbelts: Electrospinning Preparation and Luminescent Properties. Inorg. Chem. 2009, 48, 6731–6739. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Song, H.; Pan, G.; Qin, R.; Fan, L.; Zhang, H.; Bai, X.; Li, S.; Zhao, H.; Lu, S. Preparation and Luminescent Properties of YVO4:Eu3+ Nanofibers by Electrospinning. J. Nanosci. Nanotechnol. 2008, 8, 1432–1436. [Google Scholar] [CrossRef]
- Yu, H.; Song, Y.; Li, Y.; Wu, Y.; Chen, B.; Li, P.; Sheng, C. Preparation and luminescent properties of one-dimensional YVO4: Eu nanocrystals. J. Mater. Sci. Mater. Electron. 2016, 27, 2608–2613. [Google Scholar] [CrossRef]
- Chigome, S.; Abiona, A.A.; Ajao, J.A.; Kana, J.B.K.; Guerbous, L.; Torto, N.; Maaza, M. Synthesis and Characterization of Electrospun Poly(ethylene oxide)/Europium-Doped Yttrium Orthovanadate (PEO/YVO4:Eu3+) Hybrid Nanofibers. Int. J. Polym. Mater. 2010, 59, 863–872. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, P.; Li, C.; Wang, L.; Lian, H.; Quan, Z.; Lin, J. Preparation and Luminescence Properties of YVO4:Ln and Y(V,P)O4:Ln (Ln = Eu3+, Sm3+, Dy3+) Nanofibers and Microbelts by Sol−Gel/Electrospinning Process. Chem. Mater. 2008, 20, 6686–6696. [Google Scholar] [CrossRef]
- Dong, G.; Liang, M.; Qin, H.; Chai, G.; Zhang, X.; Ma, Z.; Peng, M.; Qiu, J. Controllable fabrication and broadband near-infrared luminescence of various Ni2+-activated ZnAl2O4 nanostructures by a single-nozzle electrospinning technique. Phys. Chem. Chem. Phys. 2012, 14, 13594. [Google Scholar] [CrossRef]
- Peng, C.; Li, G.; Geng, D.; Shang, M.; Hou, Z.; Lin, J. Fabrication and luminescence properties of one-dimensional ZnAl2O4 and ZnAl2O4:A3+ (A=Cr, Eu, Tb) microfibers by electrospinning method. Mater. Res. Bull. 2012, 47, 3592–3599. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, G.; Pan, Q.; Liang, M.; Ma, Z.; Dong, G.; Chen, D.; Qiu, J. Electrospun Nd3+-doped spinel nanoparticles/nanofibers with both excitation and emission wavelengths in the optical window of cells and tissues. Mat. Express 2013, 3, 210–216. [Google Scholar] [CrossRef]
- Wang, L.; Hou, Z.; Quan, Z.; Lian, H.; Yang, P.; Lin, J. Preparation and luminescence properties of Mn2+-doped ZnGa2O4 nanofibers via electrospinning process. Mater. Res. Bull. 2009, 44, 1978–1983. [Google Scholar] [CrossRef]
- Pascariu, P.; Cojocaru, C.; Olaru, N.; Samoila, P.; Airinei, A.; Ignat, M.; Sacarescu, L.; Timpu, D. Novel rare earth (RE-La, Er, Sm) metal doped ZnO photocatalysts for degradation of Congo-Red dye: Synthesis, characterization and kinetic studies. J. Environ. Manag. 2019, 239, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, X.; Zhao, Y.; Wang, C. Preparation and characterization of ZnS:Cu/PVA composite nanofibers via electrospinning. Mater. Lett. 2006, 60, 2480–2484. [Google Scholar] [CrossRef]
- Xie, Y.; Ma, Z.; Liu, L.; Su, Y.; Zhao, H.; Liu, Y.; Zhang, Z.; Duan, H.; Li, J.; Xie, E. Oxygen defects-modulated green photoluminescence of Tb-doped ZrO2 nanofibers. Appl. Phys. Lett. 2010, 97, 141916. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Ma, Q.; Yu, W.; Xi, X.; Dong, X.; Wang, J.; Liu, G. A new scheme to acquire BaY2F8:Er3+ nanofibers with upconversion luminescence. J. Mater. Sci. Mater. Electron. 2016, 27, 9152–9158. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Ma, Q.; Yu, W.; Xi, X.; Dong, X.; Wang, J.; Liu, G. Fabrication of Novel Ba4Y3F17:Er3+ Nanofibers with Upconversion Fluorescence via Combination of Electrospinning with Fluorination. J. Mater. Sci. Mater. Electron. 2016, 27, 11666–11673. [Google Scholar] [CrossRef]
- Li, D.; Ma, Q.; Xi, X.; Dong, X.; Yu, W.; Wang, J.; Liu, G. Dy3+ and Eu3+ Co-doped NaGdF4 nanofibers endowed with bifunctionality of tunable multicolor luminescence and paramagnetic properties. Chem. Eng. J. 2017, 309, 230–239. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Hou, Z.; Ma, P.; Yang, D.; Li, C.; Lin, J. Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo. Nano Res. 2015, 8, 1917–1931. [Google Scholar] [CrossRef]
- Dali, L.; Guolei, W.; Biao, D.; Xue, B.; Yu, W.; Hongwei, S.; Lin, X. Electrospinning preparation and properties of NaGdF4:Eu3+ nanowires. Solid State Sci. 2010, 12, 1837–1842. [Google Scholar] [CrossRef]
- Hou, Z.; Li, C.; Ma, P.; Li, G.; Cheng, Z.; Peng, C.; Yang, D.; Yang, P.; Lin, J. Electrospinning Preparation and Drug-Delivery Properties of an Up-Conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite. Adv. Funct. Mater. 2011, 21, 2356–2365. [Google Scholar] [CrossRef]
- Hou, Z.; Li, C.; Ma, P.; Cheng, Z.; Li, X.; Zhang, X.; Dai, Y.; Yang, D.; Lian, H.; Lin, J. Up-Conversion Luminescent and Porous NaYF4:Yb3+, Er3+@SiO2 Nanocomposite Fibers for Anti-Cancer Drug Delivery and Cell Imaging. Adv. Funct. Mater. 2012, 22, 2713–2722. [Google Scholar] [CrossRef]
- Hou, Z.; Li, X.; Li, C.; Dai, Y.; Ma, P.; Zhang, X.; Kang, X.; Cheng, Z.; Lin, J. Electrospun Upconversion Composite Fibers as Dual Drugs Delivery System with Individual Release Properties. Langmuir 2013, 29, 9473–9482. [Google Scholar] [CrossRef]
- Bao, Y.; Luu, Q.A.N.; Zhao, Y.; Fong, H.; May, P.S.; Jiang, C. Upconversion Polymeric Nanofibers Containing Lanthanide-Doped Nanoparticles via Electrospinning. Nanoscale 2012, 4, 7369. [Google Scholar] [CrossRef]
- Dong, B.; Song, H.; Yu, H.; Zhang, H.; Qin, R.; Bai, X.; Pan, G.; Lu, S.; Wang, F.; Fan, L.; et al. Upconversion Properties of Ln3+ Doped NaYF4 /Polymer Composite Fibers Prepared by Electrospinning. J. Phys. Chem. C 2008, 112, 1435–1440. [Google Scholar] [CrossRef]
- Dong, G.; Liu, X.; Xiao, X.; Qian, B.; Ruan, J.; Yang, H.; Ye, S.; Chen, D.; Qiu, J. Upconversion Luminescence of Er3+–Yb3+ Codoped NaYF4–PVP Electrospun Nanofibers. IEEE Photon. Technol. Lett. 2009, 21, 57–59. [Google Scholar] [CrossRef]
- Dong, G.; Liu, X.; Xiao, X.; Qian, B.; Ruan, J.; Ye, S.; Yang, H.; Chen, D.; Qiu, J. Photoluminescence of Ag Nanoparticle Embedded Tb3+/Ce3+ Codoped NaYF4/PVP Nanofibers Prepared by Electrospinning. Nanotechnology 2009, 20, 055707. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Electrospinning Fabrication and Characterization of Magnetic-Upconversion Fluorescent Bifunctional Core–Shell Nanofibers. J. Nanopart. Res. 2014, 16, 2239. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, P.; Yue, E.B.P.; Lin, H.; Yuan, J.; Zhao, X. Hybrid excitation mechanism of upconversion fluorescence in hollow La2Ti2O7:Tm3+/Yb3+ submicron Fibers. J. Mater. Sci. 2020, 55, 4633–4645. [Google Scholar] [CrossRef]
- Yang, R.; Song, W.; Liu, S.; Qin, W. Electrospinning Preparation and Upconversion Luminescence of Yttrium Fluoride Nanofibers. CrystEngComm 2012, 14, 7895. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Dong, X.; Yu, W.; Liu, G. Fabrication and Luminescence Properties of YF3:Eu3+ Hollow Nanofibers via Coaxial Electrospinning Combined with Fluorination Technique. J. Mater. Sci. 2013, 48, 5930–5937. [Google Scholar] [CrossRef]
- Hu, E. Fluorescent Thermal Feedback in Ho3+/Yb3+ Doped Y2Ti2O7 Electrospun Nanofibers. J. Electrochem. Soc. 2020, 167, 027510. [Google Scholar] [CrossRef]
- Zheng, C.; Li, D.; Ma, Q.; Song, Y.; Dong, X.; Wang, X.; Yu, W.; Wang, J.; Liu, G. Novel Synthetic Strategy towards BaFCl and BaFCl:Eu2+ Nanofibers with Photoluminescence Properties. Chem. Eng. J. 2017, 310, 91–101. [Google Scholar] [CrossRef]
- Jacobsohn, L.G.; Toncelli, A.; Sprinkle, K.B.; Kucera, C.J.; Ballato, J. Spectral Engineering of LaF3:Ce3+ Nanoparticles: The Role of Ce3+ in Surface Sites. J. Appl. Phys. 2012, 111, 074315. [Google Scholar] [CrossRef]
- Sani, E.; Toncelli, A.; Tonelli, M. Spectroscopy of Ce-Codoped Er:BaY2F8 Single-Crystals. Opt. Mater. 2006, 28, 1317–1320. [Google Scholar] [CrossRef]
Crystal | Active Ion | Diameter (nm) | lp (nm) | lem (nm) | Ref. |
---|---|---|---|---|---|
Ba5Si8O21 | Eu2+, Nd3+ | 2000 | 341 | 365–650 | [31] |
CaAl12O19 | Mn4+ | 500 | 325, 390, 457 | 600–700 | [32] |
Ca2MgSi2O7 | Eu2+, Dy3+ | 2500 | 378 | 430–650 | [33] |
CaMoO4 | Eu3+ | 80–150 | 280 | 591, 615 | [30] |
CaMoO4 | Tb3+ | 80–150 | 283 | 543 | [30] |
CaMoO4 | Dy3+ | 80–150 | 285 | 478, 487, 576 | [30] |
CaSi2O2N2 | Eu3+ | 200–300 | - | 500-600 | [34] |
Ca (Sr)Al2Si2O8 | Eu3+ | 500 | 263, 393 | 580, 529, 614, 654 | [35] |
Ca (Sr)Al2Si2O8 | Eu2+ | 500 | 330 | 428 | [35] |
Ca (Sr)Al2Si2O8 | Eu2+, Dy3+ | 500 | 330 | 428 | [35] |
CaTiO3 | Pr3+ | 500 | 330 | 615 | [36] |
CaAl2Si2O8 | Eu2+, Dy3+ | 200–800 | 350 | 428 | [36] |
Ca4Y6(SiO4)6O | Eu3+ | 120–260 | 277 | 540,580, 588, 616, 655, 705 | [37] |
Ca4Y6(SiO4)6O | Tb3+ | 120–260 | 235 | 418, 440, 488, 545, 585, 624 | [37] |
Ca2RE8(SiO4)6O2 (RE = Y, Gd) | Pb2+, Dy3+ | 140–190 | 254 | 347, 482, 574 | [38] |
CaWO4 | Tb3+ | 50–150 | 249 | 382, 415, 436, 466, 545, 585, 619 | [39] |
CeO2 | Ce3+ | 300 | - | - | [40] |
CuAlO2 | Eu3+ | - | 365, 465 | 587, 610, 654, 690 | [41] |
EuOF | Eu3+ | 800 | 290 | 579, 591, 609, 654, 706 | [42] |
Ga2O3 | Eu3+ | 180–300 | 325 | 598, 620, 665, 704 | [1] |
Ga2O3 | Tb3+ | 100–300 | 325 | 491, 550, 591, 625 | [43] |
Gd2O3 | Tb3+ | 80 | 274 | 493, 545, 595, 619 | [44] |
Gd2O3 | Eu3+ | 60–150 | 254 | 587, 615, 629 | [45] |
GeO2 | Er3+ | 388 ± 186 | 488 | 1540 | [46] |
GdVO4 | Eu3+ | 100–160 | 276 | 620 | [47] |
GdVO4 | Dy3+ | 100–160 | 276 | 484, 574 | [47] |
GdVO4 | Sm3+ | 100–160 | 276 | 567, 604, 649 | [47] |
HoOF | Ho3+ | 750 | 290 | 416, 488, 528, 555; 652, 660 | [42] |
LaBO3 | Eu3+ | 100 | 254 | 550–700 | [48] |
LaBO3 | Tb3+ | 100 | 254 | 485, 543, 582, 622, | [48] |
LaOBr | Tb3+ | 90 ± 15 | 253 | 418, 438, 486, 543 | [49] |
LaOBr | Er3+ | 3060 ± 420 | 980 | 522, 541, 667,1500 (@ex.532) | [50] |
LaOCl | Eu3+ | 100–200 | 295 | 531, 554, 577, 594, 615, 648, 698 | [51] |
LaOCl | Sm3+ | 100–200 | - | - | [51] |
LaOCl | Tb3+ | 100–200 | 234 | 382, 415, 438, 486, 543, 584, 621 | [51] |
LaOCl | Tb3+, Eu3+ | 100–200 | 488 | 543, 615 | [51] |
LaOCl | Tm3+, Eu3+ | 100–200 | 488 | 382, 415, 438, 486, 543, 584, 621 | [51] |
LaPO4 | Ce3+ | 75–150 | 278 | 318, 336, | [52] |
LaPO4 | Tb3+ | 75–150 | 216 | 489, 543, 585, 620 | [52] |
LaPO4 | Ce3+, Tb3+ | 75–150 | 278 | 487, 543, 583, 619 | [52] |
La2W2O9 | Eu3+ | 184 ± 19 | 288 | 533, 570-700 | [53] |
Lu2O3 | Eu3+ | 90–180 | 237 | 612 | [54] |
Lu2O2S | Eu3+ | 252 | 345 | 610 | [55] |
SnO2 | Er3+ | ~590 | 488 | 1540 | [56] |
SrAl2O4 | Eu2+, Dy3+ | 180–200 | 346–375 | 509 broadband | [57] |
SrAl2O4 | Eu2+ | 600 | 348 | 515 | [36] |
SrAl2O4 | Eu2+, Dy3+ | 600 | 348 | 515 | [36] |
Sr2MgSi2O7 | Eu2+, Dy3+ | 1500 | 360 | 410–590 | [58] |
SrRe0.6Fe11.4O19 | Ce3+ | 200–300 | - | - | [59] |
Tb2(WO4)3 | Tb3+ | 80–150 | 280 | 488, 543, 585, 619 | [60] |
Tb2(WO4)3 | Tb3+, Eu3+ | 80–150 | 280 | 488, 543, 592, 652, 702 | [60] |
TiO2 | Eu3+ | 80–100 | 395 | 580, 595, 615 | [61] |
TiO2 | Eu3+ | 60–70 | CL | 580, 595, 615, 652, 700 | [62] |
TiO2 | Er3+ | 60–80 | CL | 567, 528, 669 | [62] |
TiO2 | Sm3+ | 1000 | 330 | 580, 610, 660 | [63] |
TiO2 | Ce3+ | 700 | - | - | [64] |
TiO2 | Nd3+ | 340 | - | - | [64] |
TiO2 | Er3+ | 160 | - | - | [65] |
TiO2 | Er3+ | 75 | 325 | 528, 567, 669, 815 | [66] |
TiO2 | Eu3+ | 150 | UV | ~650-750 | [67] |
TiO2 | Er3+ | 150 | UV | ~700 | [67] |
TiO2 | Ce3+ | 150 | UV | ~700 | [67] |
TiO2 | Pr3+ | 150 | UV | ~400–420 | [67] |
TiO2 | Eu3+ | 20–100 | 325 | 600, 621, 667, 695 | [68] |
TiO2/SiO2 | Er3+ | - | - | - | [69] |
Ce2O3/TiO2 | Ce3+ | 300 | - | - | [70] |
YAG | Yb3+, Er3+ | 1800 ± 370 | 980 | 522, 554, 648 | [71] |
YAG | Eu3+ | 3250 | 235 | 592, 597, 611, 632 | [72] |
YAG | Tb3+ | 166 ± 20 | 274 | 486, 544, 587, 623 | [73] |
YAG | Ce3+, Tb3+ | 4090 ± 410 | 273 | 490, 544, 584 | [74] |
YAG | Dy3+ | 3850 ± 900 | 352 | 452, 484, 583 | [75] |
YAG | Er3+ | 590 ± 190 | 381 | 510-580, 630-690 | [17] |
YAG | Eu3+ | 400-500 | 238 | 592, 612, 650, 708 | [76] |
YAG | Ce3+ | 300 | 470 | 530 | [77] |
YAG | Ce3+ | 200–250 | 450 | 500–600 | [78] |
YAG-Al2O3 | Eu3+ | 300 | 395 | 570–720 | [79] |
YBO3 | Eu3+ | 40 | 245 | 591, 609, 624 | [80] |
Y2O3 | Eu3+ | 300 | 260 | 578, 592, 612, 652, 688 | [81] |
Y2O3 | Eu3+ | 184 ± 26 | 260 | 581, 588, 594, 612, 632 | [82] |
Y2O3 | Tb3+ | 35–260 | 304 | ~500 | [83] |
Y2O3 | Sm3+ | 35–260 | - | - | [83] |
Y2O3 | Dy3+ | 35–260 | 458 | ~600 | [83] |
Y2O3 | Eu3+ | 200–400 | 241 | 609 | [84] |
Y2O2S | Eu3 | 137 ± 18 | 260 | 515, 540, 557, 584, 588, 596, 618, 628 | [82] |
Y2SiO5 | Ce3+ | 70–140 | 367 | 437 | [85] |
Y2SiO5 | Tb3+ | 70–140 | 248 | 489, 542, 585, 625 | [85] |
Y2SiO5 | Ce3+, Tb3+ | 70–140 | 367 | 437, 489, 542, 585, 625 | [85] |
YVO4 | Eu3+ | 30–50 | 280 | ~600 | [86] |
YVO4 | Eu3+ | 30 | 280 | ~600 | [87] |
PEO/YVO4 | Eu3+ | 300 | 290 | 593, 615, 650, 698 | [88] |
Y (V, P) O4 | Eu3+ | 50–100 | 290 | 538, 587, 618, 698 | [89] |
Y (V, P) O4 | Sm3+ | 50–100 | 280 | 567, 602, 649 | [89] |
Y (V, P) O4 | Dy3+ | 50–100 | 280 | 483, 573 | [89] |
ZnAl2O4 | Ni2+ | 120 | 576 | 1000–1400 | [90] |
ZnAl2O4 | Cr3+ | 140–230 | 400 | 689 | [91] |
ZnAl2O4 | Eu3+ | 140–230 | 278 | 570–720 | [91] |
ZnAl2O4 | Tb3+ | 140–230 | 227 | 380, 415, 438, 490, 545, 587 | [91] |
ZnAl2O4 | Nd3+ | ~200 | 808 | 905, 1064, 1330 | [92] |
ZnGa2O4 | Mn2+ | 96 | 246 | 505 | [93] |
ZnO | Ce3+ | 350 | 325, 350, 365 | 400–600 | [21] |
ZnO | Er3+ | 600 | - | - | [94] |
ZnO | Sm3+ | 600 | - | - | [94] |
ZnS | Cu2+ | 300 | 315 | 450–600 | [95] |
ZrO2 | Tb3+ | 250 | 325 | 488, 543, 584, 620 | [96] |
Crystal | Dopant/s | Diameter (nm) | lp(nm) | lem(nm) | Ref |
---|---|---|---|---|---|
BaY2F8 | Er3+ | 160 ± 16 | 980 | 523, 540, 652 | [97] |
BaYF5 | Er3+ | 110 ± 11 | 980 | 522, 540, 651 | [16] |
Ba4Y3F17 | Er3+ | 84 ± 5 | 980 | 523, 541, 652 | [98] |
NaY/GdF4 | Yb3+, Er3+ | 75–200 | 980 | 510–570, 630–700 | [12] |
NaGdF4 | Eu3+ | 231 ± 4 | 274 | 417, 430, 446, 465, 489, 511, 536, 556, 584, 592, 616 | [13] |
NaGdF4 | Dy3+, Eu3+ | 246 ± 52 | 274 | 478, 570, 592, 616 | [99] |
NaGdF4 | Yb3+, Er3+ | - | 274 | 521, 542, 652 | [100] |
NaGdF4 | Eu3+ | 200 | 273 | 525-650 | [101] |
NaYF4 | Yb3+, Er3+ | About 200 | 980 | 562, 655, 663, 673 | [102] |
NaYF4 | Yb3+, Er3+ | About 300 | 980 | 510–575, 660–675 | [103] |
NaYF4 | Yb3+, Er3+ | 300–750 | 980 | 522, 542, 655 | [104] |
NaYF4 | Yb3+, Er3+ | 316 ± 66 | 980 | 523, 539, 656 | [105] |
NaYF4 | Yb3+, Er3+, Tm3+ | 300–800 | 980 | 476, 451, 550, 649, 660-740 | [106] |
NaYF4 | Yb3+, Er3+ | 400 | 980 | 375, 405, 538,520, 655 | [107] |
NaYF4 | Tb3+, Ce3+ | 400 | 254 | 280-420, 375, 414, 438, 465, 490, 544, 586, 622 | [108] |
NaYF4 | Yb3+, Er3+ | 260 | 980 | 479, 487, 542, 789 | [109] |
La2Ti2O7 | Tm3+, Yb3+ | 500–1000 | 977 | 550, 650 | [110] |
YF3 | Yb3+, Tm3+ | 200–300 | 980 | 291, 346, 362, 453, 477, 642, 802 | [111] |
YF3 | Tb3+ | 148 ± 23 | 367 | 490, 543, 588, 620 | [22] |
YF3 | Eu3+ | 211 ± 29 | 394 | 587, 593, 615, 620 | [112] |
YF3 | Eu3+ | 197 ± 34 | 394 | 555, 587, 593, 615, 620, 651, 692 | [29] |
Y2Ti2O7 | Ho3+, Yb3 | 300–400 | 977 | 550, 650 | [113] |
GdF3 | Eu3+ | 86.5 ± 0.5 | 274 | 418, 430, 445, 464, 489, 510, 538, 555, 587, 594, 615 | [19] |
BaFCl | Eu2+ | 193 ± 1 | 275 | 387 | [114] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toncelli, A. RE-Based Inorganic-Crystal Nanofibers Produced by Electrospinning for Photonic Applications. Materials 2021, 14, 2679. https://doi.org/10.3390/ma14102679
Toncelli A. RE-Based Inorganic-Crystal Nanofibers Produced by Electrospinning for Photonic Applications. Materials. 2021; 14(10):2679. https://doi.org/10.3390/ma14102679
Chicago/Turabian StyleToncelli, Alessandra. 2021. "RE-Based Inorganic-Crystal Nanofibers Produced by Electrospinning for Photonic Applications" Materials 14, no. 10: 2679. https://doi.org/10.3390/ma14102679
APA StyleToncelli, A. (2021). RE-Based Inorganic-Crystal Nanofibers Produced by Electrospinning for Photonic Applications. Materials, 14(10), 2679. https://doi.org/10.3390/ma14102679