Enhanced Storage Stability and Rheological Properties of Asphalt Modified by Activated Waste Rubber Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
3. Results and Discussion
3.1. Segregation Result of Waste Rubber Powder Modified Asphalt
3.2. Rheological Properties of Waste Rubber Powder Modified Asphalt
3.2.1. Bending Beam Rheometer (BBR) Test
3.2.2. Brookfield Viscosity Test
3.2.3. Temperature Sweep Test
3.2.4. Multiple Stress Creep Recovery (MSCR) Test
3.2.5. Fatigue Test
3.3. Effect of Composite Activation on Waste Rubber Powder
3.3.1. FT-IR Test
3.3.2. SEM Test
3.3.3. BET Test
4. Conclusions
- (1)
- The physical and chemical composite activation on waste rubber powder particles significantly improved the storage ability of WR modified asphalt, the softening point difference of KMWR modified asphalt was 1.8 °C.
- (2)
- KMWR modified asphalt had better crack resistance, better elastic recovery, better fatigue damage resistance, and higher failure temperature. After the physical and chemical composite activation, the stiffness of WR modified asphalt was decreased from 362 to 241 MPa, the non-recoverable creep compliance of WR modified asphalt was decreased from 2.29 to 0.07 kPa−1, The fatigue life of WR modified asphalt was nearly doubled than that of virgin asphalt.
- (3)
- The composite activation made waste rubber powder desulfurized and grafted a large number of active groups, such as –OH and –N-H.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WR | waste crumb rubber powder |
MCA | Microwave and chemical composite activation |
KMWR | The WR which was firstly activated by microwave, and then was grafted by the silane coupling agent KH550 |
MWR | The WR that was activated by a microwave |
WRMA | WR modified asphalt |
References
- Mao, D.; Hao, Z.; Wang, Y.; Fu, S. A Novel Dynamic Dispatching Method for Bicycle-Sharing System. ISPRS Int. J. Geo-Inf. 2019, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.-P.; Wang, J.-Q.; Wang, J.; Zhang, H.-Y. A multi-phase QFD-based hybrid fuzzy MCDM approach for performance evaluation: A case of smart bike-sharing programs in Changsha. J. Clean. Prod. 2018, 171, 1068–1083. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Gutierrez Aguilar, V.; Gonzalez-Torre, I. Physical and mechanical behaviour of a fibre-reinforced rubber membrane with self-healing purposes via microwave heating. Constr. Build. Mater. 2015, 94, 45–56. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Silva-Robles, E.; Gonzalez-Torre, I.; Saravia-Montero, Y. Experimental evaluation of mechanical and thermal properties of recycled rubber membranes reinforced with crushed polyethylene particles. J. Clean. Prod. 2017, 145, 85–97. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Concha, J.L.; Borinaga-Treviño, R. Evaluation of the thermophysical and heating properties of a composite rubber membrane with energy harvesting purposes. Polym. Test. 2017, 64, 145–155. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Sun, C. Effects of composite warm mix additive (CAR) on the physical and rheological performance of bitumen and the pavement performance of its concrete. Materials 2019, 12, 3916. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, S.; Liu, Q. Aging effects of ultraviolet lights with same dominant wavelength and different wavelength ranges on a hydrocarbon-based polymer (asphalt). Polym. Test. 2019, 75, 64–75. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Hasan, M.R.M.; Diab, A.; Shao, H.; Chen, S.; Ge, D. Environmental and mechanical performance of crumb rubber modified warm mix asphalt using Evotherm. J. Clean. Prod. 2017, 159, 346–358. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, F.; Zhu, X.; Huang, B.; Wang, J.; Amirkhanian, S. Energy consumption and environmental impact of rubberized asphalt pavement. J. Clean. Prod. 2018, 180, 139–158. [Google Scholar] [CrossRef]
- Shu, B.; Wu, S.; Dong, L.; Norambuena-Contreras, J.; Li, Y.; Li, C.; Yang, X.; Liu, Q.; Wang, Q.; Wang, F.; et al. Self-healing capability of asphalt mixture containing polymeric composite fibers under acid and saline-alkali water solutions. J. Clean. Prod. 2020, 268, 122387. [Google Scholar] [CrossRef]
- Xu, O.; Rangaraju, P.R.; Wang, S.; Xiao, F. Comparison of rheological properties and hot storage characteristics of asphalt binders modified with devulcanized ground tire rubber and other modifiers. Constr. Build. Mater. 2017, 154, 841–848. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, H.; Fini, E.H.; You, Z.; Yang, X.; Gao, J.; Dong, S.; Jiang, G. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt. Constr. Build. Mater. 2018, 191, 692–701. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.; Perram, D.; Hand, D.; Ahmed, Z.; Wei, W.; Luo, S. Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. J. Hazard. Mater. 2019, 365, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; You, Z.; Wang, H.; Ye, M.; Yap, Y.K.; Si, C. The impact of bio-oil as rejuvenator for aged asphalt binder. Constr. Build. Mater. 2019, 196, 134–143. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, C.; Wang, H.; Su, Y. Evaluation of crumb rubber modification and short-term aging on the rutting performance of bioasphalt. Constr. Build. Mater. 2018, 193, 467–473. [Google Scholar] [CrossRef]
- Shafabakhsh, G.H.; Sadeghnejad, M.; Sajed, Y. Case study of rutting performance of HMA modified with waste rubber powder. Case Stud. Constr. Mater. 2014, 1, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Tortum, A.; Çelik, C.; Cüneyt Aydin, A. Determination of the optimum conditions for tire rubber in asphalt concrete. Build. Environ. 2005, 40, 1492–1504. [Google Scholar] [CrossRef]
- Asgharzadeh, S.M.; Sadeghi, J.; Peivast, P.; Pedram, M. Fatigue properties of crumb rubber asphalt mixtures used in railways. Constr. Build. Mater. 2018, 184, 248–257. [Google Scholar] [CrossRef]
- Liu, G.; Liang, Y.; Chen, H.; Wang, H.; Komacka, J.; Gu, X. Influence of the chemical composition and the morphology of crumb rubbers on the rheological and self-healing properties of bitumen. Constr. Build. Mater. 2019, 210, 555–563. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Y.; Fu, L.; Guo, M.; Zhang, L. Influence of crumb rubber and tafpack super on performances of SBS modified porous asphalt mixtures. Road Mater. Pavement Des. 2019, 20, S196–S216. [Google Scholar] [CrossRef]
- Zhang, X.; Saha, P.; Cao, L.; Li, H.; Kim, J. Devulcanization of waste rubber powder using thiobisphenols as novel reclaiming agent. Waste Manag. 2018, 78, 980–991. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, H.; Wei, Y.; Zhang, X.; Wei, D.; Li, J. Microscopic Properties of Hydrogen Peroxide Activated Crumb Rubber and Its Influence on the Rheological Properties of Crumb Rubber Modified Asphalt. Materials 2019, 12, 1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, C.; Ma, Y.; Wu, S.; Wei, Y.; Li, J. Wear resistance and wet skid resistance of composite bionic tire tread compounds with pit structure. Mater. Res. Express 2019, 6. [Google Scholar] [CrossRef]
- Ding, X.; Ma, T.; Zhang, W.; Zhang, D. Experimental study of stable crumb rubber asphalt and asphalt mixture. Constr. Build. Mater. 2017, 157, 975–981. [Google Scholar] [CrossRef]
- Shu, B.; Wu, S.; Dong, L.; Norambuena-Contreras, J.; Yang, X.; Li, C.; Liu, Q.; Wang, Q. Microfluidic synthesis of polymeric fibers containing rejuvenating agent for asphalt self-healing. Constr. Build. Mater. 2019, 219, 176–183. [Google Scholar] [CrossRef]
- Shatanawi, K.M.; Biro, S.; Geiger, A.; Amirkhanian, S.N. Effects of furfural activated crumb rubber on the properties of rubberized asphalt. Constr. Build. Mater. 2012, 28, 96–103. [Google Scholar] [CrossRef]
- Han, L.; Zheng, M.; Wang, C. Current status and development of terminal blend tyre rubber modified asphalt. Constr. Build. Mater. 2016, 128, 399–409. [Google Scholar] [CrossRef]
- Pistor, V.; Scuracchio, C.H.; Oliveira, P.J.; Fiorio, R.; Zatteral, A.J. Devulcanization of Ethylene-Propylene-Diene Polymer Residues by Microwave-Influence of the Presence of Paraffinic Oil. Polym. Eng. Sci. 2011, 51, 697–703. [Google Scholar] [CrossRef]
- Li, B.; Huang, W.; Tang, N.; Hu, J.; Lin, P.; Guan, W.; Xiao, F.; Shan, Z. Evolution of components distribution and its effect on low temperature properties of terminal blend rubberized asphalt binder. Constr. Build. Mater. 2017, 136, 598–608. [Google Scholar] [CrossRef]
- Billiter, T.C.; Davison, R.R.; Glover, C.J.; Bullin, J.A. Production of Asphalt-Rubber Binders by High-Cure Conditions. Transp. Res. Rec. 1997, 1586, 50–56. [Google Scholar] [CrossRef]
- Xiao, P.; Wu, M.; Shi, S.; Jiang, D. Comparative Study on Water Aging of Rubber Asphalt and TOR Rubber Asphat. Appl. Mech. Mater. 2012, 178, 1383–1386. [Google Scholar] [CrossRef]
- Padhan, R.K.; Gupta, A.A.; Mohanta, C.S.; Badoni, R.P.; Bhatnagar, A.K. Performance improvement of a crumb rubber modified bitumen using polyoctenamer and cross linking agent. Road Mater. Pavement Des. 2017, 18, 999–1006. [Google Scholar] [CrossRef]
- Kocevski, S.; Yagneswaran, S.; Xiao, F.P.; Punith, V.S.; Smith, D.W.; Amirkhanian, S. Surface modified ground rubber tire by grafting acrylic acid for paving applications. Constr. Build. Mater. 2012, 34, 83–90. [Google Scholar] [CrossRef]
- Xie, J.; Yang, Y.M.; Lv, S.T.; Peng, X.H.; Zhang, Y.N. Investigation on Preparation Process and Storage Stability of Modified Asphalt Binder by Grafting Activated Crumb Rubber. Materials 2019, 12, 2014. [Google Scholar] [CrossRef] [Green Version]
- Aihong, K. Research on the Mechanism of ACRM. J. Highw. Transp. Res. Dev. 2008, 25, 12–16. [Google Scholar]
- Liang, M.; Ren, S.; Fan, W.; Wang, H.; Cui, W.; Zhao, P. Characterization of fume composition and rheological properties of asphalt with crumb rubber activated by microwave and TOR. Constr. Build. Mater. 2017, 154, 310–322. [Google Scholar] [CrossRef]
- Shu, B.N.; Wu, S.P.; Pang, L.; Javilla, B. The Utilization of Multiple-Walled Carbon Nanotubes in Polymer Modified Bitumen. Materials 2017, 10, 416. [Google Scholar] [CrossRef]
- Shu, B.; Zhou, M.; Yang, T.; Li, Y.; Ma, Y.; Liu, K.; Bao, S.; Barbieri, D.M.; Wu, S. The Properties of Different Healing Agents Considering the Micro-Self-Healing Process of Asphalt with Encapsulations. Materials 2021, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cao, F.; Xiao, F.; Amirkhanian, S. BBR and DSR Testing of Aging Properties of Polymer and Polyphosphoric Acid-Modified Asphalt Binders. J. Mater. Civil Eng. 2018, 30. [Google Scholar] [CrossRef]
- Lo Presti, D. Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Constr. Build. Mater. 2013, 49, 863–881. [Google Scholar] [CrossRef]
Asphalt Types | SB | SU | SD |
---|---|---|---|
WR | 67.6 | 61.5 | 6.1 |
MWR | 67.2 | 63.7 | 3.5 |
KMWR | 66.7 | 64.9 | 1.8 |
Samples | 70# | WR | MWR | KMWR |
---|---|---|---|---|
VTS | −0.9155 | −0.7951 | −0.7899 | −0.7606 |
R2 | 0.9992 | 0.9984 | 0.9997 | 0.9992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xu, Y.; Wang, H.; Shu, B.; Barbieri, D.M.; Norambuena-Contreras, J. Enhanced Storage Stability and Rheological Properties of Asphalt Modified by Activated Waste Rubber Powder. Materials 2021, 14, 2693. https://doi.org/10.3390/ma14102693
Liu W, Xu Y, Wang H, Shu B, Barbieri DM, Norambuena-Contreras J. Enhanced Storage Stability and Rheological Properties of Asphalt Modified by Activated Waste Rubber Powder. Materials. 2021; 14(10):2693. https://doi.org/10.3390/ma14102693
Chicago/Turabian StyleLiu, Weihong, Yishen Xu, Hongjun Wang, Benan Shu, Diego Maria Barbieri, and Jose Norambuena-Contreras. 2021. "Enhanced Storage Stability and Rheological Properties of Asphalt Modified by Activated Waste Rubber Powder" Materials 14, no. 10: 2693. https://doi.org/10.3390/ma14102693
APA StyleLiu, W., Xu, Y., Wang, H., Shu, B., Barbieri, D. M., & Norambuena-Contreras, J. (2021). Enhanced Storage Stability and Rheological Properties of Asphalt Modified by Activated Waste Rubber Powder. Materials, 14(10), 2693. https://doi.org/10.3390/ma14102693