Study of the Structure, Magnetic, Thermal and Electrical Characterisation of ZnCr2Se4: Ta Single Crystals Obtained by Chemical Vapour Transport
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Growth of Single Crystals and Chemical Composition
3.2. Structural Study
3.3. Electrical and Magnetic Properties
3.4. Heat Capacity
3.5. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snyder, G.J.; Caillat, T.; Fleurial, J.P. Thermoelectric properties of Chalcogenides with Spinel Structure. Mat. Res. Innov. 2001, 5, 67. [Google Scholar] [CrossRef]
- Groń, T.; Malicka, E.; Pacyna, A.W. Influence of temperature on critical fields in ZnCr2Se4. Physica B 2009, 404, 3554–3558. [Google Scholar] [CrossRef]
- Malicka, E.; Groń, T.; Ślebarski, A.; Pacyna, A.W.; Goraus, J.; Fijałkowski, M.; Heimann, J. Specific heat and magnetic susceptibility of single-crystalline ZnCr2-xAlxSe4 (x = 0.15, 0.23). J. Phys. Chem. Solids 2011, 72, 974–979. [Google Scholar] [CrossRef] [Green Version]
- Malicka, E.; Groń, T.; Pacyna, A.W.; Gągor, A.; Mydlarz, T. Spin-driven critical fields in a spinel series based on the matrix ZnCr2Se4. J. Phys. Conf. Ser. 2011, 303, 012077. [Google Scholar] [CrossRef]
- Malicka, E.; Groń, T.; Ślebarski, A.; Gągor, A.; Pacyna, A.W.; Sitko, R.; Goraus, J.; Mydlarz, T.; Heimann, J. Specific heat and magnetic susceptibility of single-crystalline ZnCr2Se4 spinels doped with Ga, In and Ce. Mater. Chem. Phys. 2011, 131, 142–150. [Google Scholar] [CrossRef]
- Akimitsu, J.; Siratori, K.; Shirane, G.; Iizumi, M.; Watanabe, T. Neutron Scattering Study of ZnCr2Se4 with Screw Spin Structure. J. Phys. Soc. Jpn. 1978, 44, 172–180. [Google Scholar] [CrossRef]
- Suga, S.; Shin, S.; Taniguchi, M.; Inoue, K.; Seki, M.; Nakada, I.; Shibuya, S.; Yamaguchi, T. Reflectance spectra of ZnCr2Se4 spinel from 4 to 100 eV measured with synchrotron radiation: Band structure, covalency, and final-state interactions. Phys. Rev. B 1982, 25, 5486. [Google Scholar] [CrossRef]
- Yaresko, A.N. Electronic band structure and exchange coupling constants in ACr2X4 spinels (A = Zn, Cd, Hg; X = O, S, Se). Phys. Rev. B 2008, 77, 115106. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, T.; Kant, C.; Mayr, F.; Schmidt, M.; Tsurkan, V.; Deisenhofer, J.; Loidl, A. Optical properties of ZnCr2Se4. Eur. Phys. J. B 2009, 68, 153–160. [Google Scholar] [CrossRef]
- Plumier, R. Étude par diffraction de neutrons de l’antiferromagnétisme hélicoïdal du spinelle ZnCr2Se4 en présence d’un champ magnétique. J. Phys. 1966, 27, 213–219. [Google Scholar] [CrossRef]
- Cameron, A.S.; Tymoshenko, Y.V.; Portnichenko, P.Y.; Gavilano, J.; Tsurkan, V.; Felea, V.; Loidl, A.; Zherlitsyn, S.; Wosnitza, J.; Inosov, D.S. Magnetic phase diagram of the helimagnetic spinel compound ZnCr2Se4 revisited by small-angle neutron scattering. J. Phys. Condens. Matter 2016, 28, 146001. [Google Scholar] [CrossRef] [Green Version]
- Groń, T. Influence of vacancies and mixed valence on the transport processes in solid solutions with the spinel structure. Philos. Mag. B 1994, 70, 121–132. [Google Scholar] [CrossRef]
- Jendrzejewska, I.; Groń, T.; Kusz, J.; Żelechower, M.; Maciążek, E.; Ślebarski, A.; Fijałkowski, M. Spin-glass-like behaviour in tin doped ZnCr2Se4 single crystals. J. Alloys Compd. 2015, 635, 238–244. [Google Scholar] [CrossRef]
- Maciążek, E.; Karolus, M.; Kubisztal, M.; Jendrzejewska, I.; Sitko, R.; Groń, T.; Ślebarski, A.; Fijałkowski, M. Magnetic and specific heat properties of a new Gd-doped ZnCr2Se4. Mater. Chem. Phys. 2015, 168, 187–192. [Google Scholar] [CrossRef]
- Jendrzejewska, I.; Groń, T.; Knizek, K.; Pilch, M.; Ślebarski, A.; Goraus, J.; Zajdel, P.; Stokłosa, Z.; Pietrasik, E.; Goryczka, T.; et al. Preparation, structure and magnetic, electronic and thermal properties of Dy3+-doped ZnCr2Se4 with unique geometric type spin-glass. J. Sol. State Chem. 2021, 298, 122114. [Google Scholar] [CrossRef]
- Duda, H.; Groń, T.; Jendrzejewska, I.; Mazur, S.; Zajdel, P.; Kita, A. Polaron conductivity of the strongly defective ZnCr2-xNixSe4 spinels. Phys. Stat. Sol. 2007, 4, 1309–1312. [Google Scholar] [CrossRef]
- Jendrzejewska, I.; Mydlarz, T.; Okońska-Kozłowska, I.; Heimann, J. Magnetic properties of single crystals CuxZnyCrzSe4. J. Magn. Magn. Mater. 1998, 186, 381–385. [Google Scholar] [CrossRef]
- Jendrzejewska, I.; Groń, T.; Goraus, J.; Pilch, M.; Pietrasik, E.; Barsova, Z.; Czerniewski, J.; Goryczka, T.; Witkowska-Kita, B.; Bienko, A.; et al. Synthesis and structural, magnetic, thermal and electronic properties of Mn-doped ZnCr2Se4. Mater. Chem. Phys. 2019, 238, 121901. [Google Scholar] [CrossRef]
- Jendrzejewska, I.; Zajdel, P.; Heimann, J.; Krok-Kowalski, J.; Mydlarz, T.; Mrzigod, J. Influence of manganese on magnetic and electronic properties of ZnCr2Se4 single Crystals. Mater. Res. Bull. 2012, 47, 1881–1886. [Google Scholar] [CrossRef]
- Jendrzejewska, I.; Groń, T.; Kusz, J.; Barsova, Z.; Pietrasik, E.; Goryczka, T.; Sawicki, B.; Ślebarski, A.; Fijałkowski, M.; Jampilek, J.; et al. Synthesis, crystal structure and characterization of monocrystalline ZnCr2Se4 doped with neodymium. J. Sol. State Chem. 2020, 292, 121661. [Google Scholar] [CrossRef]
- Jendrzejewska, I.; Groń, T.; Kusz, J.; Goraus, J.; Barsova, Z.; Pietrasik, E.; Czerniewski, J.; Goryczka, T.; Kubisztal, M. Growth, structure and physico-chemical properties of monocrystalline ZnCr2Se4:Ho prepared by chemical vapour transport. J. Sol. State Chem. 2020, 281, 121024. [Google Scholar] [CrossRef]
- Jendrzejewska, I.; Żelechower, M.; Szamocka, K.; Mydlarz, T.; Waśkowska, A.; Okońska-Kozłowska, I. Growth of the CdxNiyCrzSe4 single crystals and their magnetic properties. J. Crys. Growth 2004, 270, 30–37. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Groń, T.; Krok-Kowalski, J.; Duda, H.; Mydlarz, T.; Gilewski, A.; Walczak, J.; Filipek, E.; Bärner, K. Metamagnetism in the Cr2V4-xMoxO13+0.5x solid solutions. Phys. Rev. B 1995, 51, 16021–16024. [Google Scholar] [CrossRef] [PubMed]
- Groń, T.; Krok-Kowalski, J.; Pacyna, A.W.; Mydlarz, T. Spin-glass-like behaviour and magnetic order in Mn[Cr0.5Ga1.5]S4 spinels. J. Phys. Chem. Sol. 2009, 70, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.E.; Brown, H.A. Application of the Weiss molecular field theory to the B-site spinel. Phys. Status Sol. A 1972, 10, 249–253. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Malicka, E.; Groń, T.; Skrzypek, D.; Pacyna, A.W.; Badurski, D.; Waśkowska, A.; Mazur, S.; Sitko, R. Correlation between the negative magnetoresistance effect and magnon excitations in single-crystalline CuCr1.6V0.4Se4. Philos. Mag. 2010, 90, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T. Electrical Resistivity and Hall Effect of ZnCr2Se4. J. Phys. Soc. Jpn. 1974, 37, 140–144. [Google Scholar] [CrossRef]
- Hemberger, J.; von Nidda, H.-A.K.; Tsurkan, V.; Loidl, A. Large Magnetostriction and Negative Thermal Expansion in the Frustrated Antiferromagnet ZnCr2Se4. Phys. Rev. Lett. 2007, 98, 147203. [Google Scholar] [CrossRef] [Green Version]
No. | Nominal Formula | Td (K) | Tc (K) | ΔT (K) | % Weight | Real Chemical Formula | |||
---|---|---|---|---|---|---|---|---|---|
Zn | Cr | Ta | Se | ||||||
(1) | Zn0.9Ho0.1Cr2Se4 | 1223 | 1153 | 70 | 13.29 ± 0.09 | 20.66 ± 0.06 | 1.99 ± 0.01 | 64.06 ± 0.04 | Zn1.05Cr1.95Ta0.05Se4 |
(2) | Zn0.9Ho0.1Cr2Se4 | 1133 | 1083 | 50 | 13.22 ± 0.08 | 20.53 ± 0.07 | 2.14 ± 0.02 | 64.11 ± 0.05 | Zn0.99Cr1.94Ta0.06Se4 |
(3) | Zn0.8Ho0.2Cr2Se4 | 1203 | 1143 | 60 | 13.08 ± 0.06 | 20.37 ± 0.06 | 2.45 ± 0.05 | 64.10 ± 0.03 | Zn0.99Cr1.93Ta0.07Se4 |
(4) | Zn0.8Ho0.2Cr2Se4 | 1203 | 1153 | 50 | 13.12 ± 0.02 | 20.12 ± 0.04 | 2.68 ± 0.06 | 64.18 ± 0.03 | Zn0.99Cr1.82Ta0.08Se4 |
(5) | Zn0.7Ho0.3Cr2Se4 | 1203 | 1133 | 70 | 13.13 ± 0.03 | 19.75 ± 0.05 | 3.25 ± 0.03 | 63.87 ± 0.03 | Zn0.99Cr1.89Ta0.10Se4 |
(6) | Zn0.7Ho0.3Cr2Se4 | 1203 | 1143 | 60 | 13.21 ± 0.02 | 19.53 ± 0.04 | 3.92 ± 0.04 | 63.34 ± 0.02 | Zn1.00Cr1.87Ta0.12Se4 |
Chemical Formula | Lattice Parameter (Å) | Volume (Å3) | Density Calc. (Mg/m3) | Absorption Coeff. (mm−1) | Goodness of Fit on F2 | R Parameters | |
---|---|---|---|---|---|---|---|
R1 | wR2 | ||||||
ZnCr1.95Ta0.05Se4 | 10.4786(12) | 1150.56(4) | 5.679 | 33.717 | 1.128 | 0.0122 | 0.0335 |
ZnCr1.94Ta0.06Se4 | 10.4794(3) | 1150.82(2) | 5.693 | 33.801 | 1.123 | 0.0145 | 0.0423 |
ZnCr1.93Ta0.07Se4 | 10.4832(9) | 1152.08(9) | 5.701 | 33.827 | 1.156 | 0.0195 | 0.0500 |
ZnCr1.92Ta0.08Se4 | 10.4938(12) | 1155.56(2) | 5.700 | 33.834 | 1.156 | 0.0179 | 0.0534 |
ZnCr1.90Ta0.10Se4 | 10.5003(15) | 1157.73(3) | 5.712 | 33.852 | 1.213 | 0.0155 | 0.0451 |
ZnCr1.88Ta0.12Se4 | 10.5069(18) | 1159.90(3) | 5.737 | 33.880 | 1.234 | 0.0164 | 0.0423 |
Spinel | Anion Parameter u | SOF in A Site | SOF in B Site | Uiso (Å × 103) | ||
---|---|---|---|---|---|---|
Zn | Cr/Ta | Zn | Cr/Ta | Se | ||
ZnCr1.95Ta0.05Se4 | 0.2594(1) | 1.0 | 1.951:0.049(9) | 8.73(15) | 5.77(15) | 6.13(12) |
ZnCr1.96Ta0.04Se4 | 0.2594(1) | 1.0 | 1.961:0.039(9) | 8.83(15) | 5.65(15) | 6.24(12) |
ZnCr1.93Ta0.07Se4 | 0.2594(1) | 1.0 | 1.929:0.071(9) | 8.83(15) | 5.65(15) | 6.24(12) |
ZnCr1.92Ta0.08Se4 | 0.2594(2) | 1.0 | 1.919:0.081(1) | 8.24(18) | 7.14(17) | 7.57(12) |
ZnCr1.90Ta0.10Se4 | 0.2594(2) | 1.0 | 1.902:0.098(2) | 8.80(17) | 6.15(16) | 6.27(12) |
ZnCr1.88Ta0.12Se4 | 0.2594(1) | 1.0 | 1.879:0.121(3) | 8.67(12) | 5.98(14) | 6.54(12) |
Spinel | Bond Distances | Bond Angles | ||
---|---|---|---|---|
Zn-Se | Cr/Ta-Se | Se-Zn-Se | Se-Cr/Ta-Se | |
ZnCr1.95Ta0.05Se4 | 2.4388(3) | 2.5252(2) | 109.5(0) × 6 | 180.0(0) × 3 |
94.543(7) × 6 | ||||
85.457(9) × 6 | ||||
ZnCr1.94Ta0.06Se4 | 2.4401(3) | 2.5248(2) | 109.5(0) × 6 | 180.0(0) × 3 |
94.574(7) × 6 | ||||
85.4426(9) × 6 | ||||
ZnCr1.93Ta0.07Se4 | 2.4407(4) | 2.5253(2) | 109.5(0) × 6 | 180.0(0) × 3 |
94.575(9) × 6 | ||||
85.425(9) × 6 | ||||
ZnCr1.92Ta0.08Se4 | 2.4450(4) | 2.5299(2) | 109.5(0) × 6 | 180.0(0) × 3 |
94.575(8) × 6 | ||||
82.425(8) × 6 | ||||
ZnCr1.90Ta0.10Se4 | 2.4454(4) | 2.55137(2) | 109.5(0) × 6 | 180.0(0) × 3 |
94.555(8) × 6 | ||||
85.445(8) × 6 | ||||
ZnCr1.88Ta0.12Se4 | 2.4482(4) | 2.55543(2) | 109.5(0) × 6 | 180.0(0) × 3 |
94.575(8) × 6 | ||||
85.425(8) × 6 |
Spinel | C (emu × K/mol) | TN (K) | θCW (K) | µeff (µB/f.u.) | M(10K) (µB/f.u.) | peff | J1 (K) | J2 (K) | Hc1 (kOe) | Hc2 (kOe) |
---|---|---|---|---|---|---|---|---|---|---|
ZnCr2Se4 | 4.08 | 21 | 90 | 5.71 | 6.0 | 5.477 | −1.65 | 1.28 | 10.0 | 65.0 |
ZnCr1.95Ta0.05Se4 | 4.563 | 22.7 | 50.3 | 6.041 | 4.85 | 5.408 | −2.57 | 0.99 | 10.0 | 43.5 |
ZnCr1.94Ta0.06Se4 | 4.944 | 22.6 | 41.5 | 6.288 | 5.13 | 5.394 | −2.70 | 0.91 | 10.4 | 43.9 |
ZnCr1.93Ta0.07Se4 | 4.278 | 22.4 | 58.8 | 5.849 | 5.30 | 5.381 | −2.38 | 1.05 | 10.7 | 42.7 |
ZnCr1.92Ta0.08Se4 | 2.971 | 22.3 | 96.1 | 4.875 | 5.54 | 5.367 | −1.74 | 1.36 | 10.7 | 45.6 |
ZnCr1.90Ta0.10Se4 | 3.630 | 22.5 | 79.1 | 5.388 | 5.61 | 5.339 | −2.06 | 1.22 | 10.2 | 43.3 |
ZnCr1.88Ta0.12Se4 | 3.696 | 21.9 | 78.4 | 5.437 | 5.71 | 5.310 | −1.98 | 1.20 | 10.4 | 42.2 |
Ta Content | Weight Loss (%) | Onset (o) | Endset (o) | Peak Minimum (o) | Peak Height (mW) | Peak Area (J) | Enthalpy (J/g) |
---|---|---|---|---|---|---|---|
0.0 | 35 | 735 | 771 | 755 | 6.47 | 1.09 | 51.9 |
0.10 | 34 | 693 | 725 | 710 | 4.42 | 1.83 | 117.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jendrzejewska, I.; Groń, T.; Kwapuliński, P.; Kusz, J.; Pietrasik, E.; Goryczka, T.; Sawicki, B.; Ślebarski, A.; Fijałkowski, M.; Jampilek, J.; et al. Study of the Structure, Magnetic, Thermal and Electrical Characterisation of ZnCr2Se4: Ta Single Crystals Obtained by Chemical Vapour Transport. Materials 2021, 14, 2749. https://doi.org/10.3390/ma14112749
Jendrzejewska I, Groń T, Kwapuliński P, Kusz J, Pietrasik E, Goryczka T, Sawicki B, Ślebarski A, Fijałkowski M, Jampilek J, et al. Study of the Structure, Magnetic, Thermal and Electrical Characterisation of ZnCr2Se4: Ta Single Crystals Obtained by Chemical Vapour Transport. Materials. 2021; 14(11):2749. https://doi.org/10.3390/ma14112749
Chicago/Turabian StyleJendrzejewska, Izabela, Tadeusz Groń, Piotr Kwapuliński, Joachim Kusz, Ewa Pietrasik, Tomasz Goryczka, Bogdan Sawicki, Andrzej Ślebarski, Marcin Fijałkowski, Josef Jampilek, and et al. 2021. "Study of the Structure, Magnetic, Thermal and Electrical Characterisation of ZnCr2Se4: Ta Single Crystals Obtained by Chemical Vapour Transport" Materials 14, no. 11: 2749. https://doi.org/10.3390/ma14112749
APA StyleJendrzejewska, I., Groń, T., Kwapuliński, P., Kusz, J., Pietrasik, E., Goryczka, T., Sawicki, B., Ślebarski, A., Fijałkowski, M., Jampilek, J., & Duda, H. (2021). Study of the Structure, Magnetic, Thermal and Electrical Characterisation of ZnCr2Se4: Ta Single Crystals Obtained by Chemical Vapour Transport. Materials, 14(11), 2749. https://doi.org/10.3390/ma14112749