Characterization of Metal-Bound Benzimidazole Derivatives, Effects on Tumor Cells of Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Analysis
2.2. Methods and Instruments
2.3. Statistical Analysis
3. Results and Discussion
3.1. Synthesis
3.1.1. Ligand Synthesis
2-(Pyridin-4-yl)-3H-imidazo[4,5-c]pyridine (L1)
2-(Pyridin-4-yl)-3H-imidazo[4,5-b]pyridine (L2)
2-(Pyridin-3-yl)-3H-imidazo[4,5-b]pyridine (L3)
6-Bromo-2-(pyridin-3-yl)-3H-imidazo[4,5-b]pyridine (L4)
3.1.2. Complex Synthesis
3.2. MTT Cytotoxicity Assay
3.3. FTIR Spectra
3.4. Thermal Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feroz, A.S.; Ali, N.A.; Ali, N.A.; Feroz, R.; Meghani, S.N.; Saleem, S. Impact of the COVID-19 pandemic on mental health and well-being of communities: An exploratory qualitative study protocol. BMJ Open 2020. [Google Scholar] [CrossRef]
- Watkins, J. Preventing a covid-19 pandemic. BMJ 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burki, T. China’s successful control of COVID-19. Lancet. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Castro, M.; Ares, S.; Cuest, J.A.; Manrubia, S. The turning point and end of an expanding epidemic cannot be precisely forecast. Proc. Natl. Acad. Sci. USA 2020. [Google Scholar] [CrossRef]
- Ma, Q.; Pan, W.; Li, R.; Liu, B.; Li, C.; Xie, Y.; Wang, Z.; Zhao, J.; Jiang, H.; Huang, J.; et al. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. Pharmacol. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- McKee, D.L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res. 2020, 157, 104859. [Google Scholar] [CrossRef]
- Veerasamy, S.; Chandrakumar, M.; Balasubramaniyan, M.; Arumugam, R.K.; Pounraj, T. Advances of Inorganic Materials in the Detection and Therapeutic Uses Against Coronaviruses. Curr. Med. Chem. 2021, 28. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, V.; Lee, K.W. A computational drug repurposing approach in identifying the cephalosporin antibiotic and anti-hepatitis C drug derivatives for COVID-19 treatment. Comput. Biol. Med. 2021. [Google Scholar] [CrossRef]
- Ghosh, K.; Amin, S.A.; Gayen, S.; Jha, T. Chemical-informatics approach to COVID-19 drug discovery: Exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors. J. Mol. Struct. 2021. [Google Scholar] [CrossRef] [PubMed]
- Oroojalian, F.; Haghbin, A.; Baradaran, B.; Hemmat, N.; Shahbazi, M.A.; Baghi, H.B.; Mokhtarzadeh, A.; Hamblin, M.R. Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. Int. J. Biol. Macromol. 2020, 165, 18–43. [Google Scholar] [CrossRef]
- Nie, L.; Dai, K.; Wu, J.; Zhou, X.; Hu, J.; Zhang, C.; Zhan, Y.; Song, Y.; Fan, W.; Hu, Z.; et al. Clinical characteristics and risk factors for in-hospital mortality of lung cancer patients with COVID-19: A multicenter, retrospective, cohort study. Thorac. Cancer 2021. [Google Scholar] [CrossRef]
- Bertaglia, V.; Reale, M.L.; Bironzo, P.; Palesandro, E.; Mariniello, A.; Leone, G.; Tabbò, F.; Bungaro, M.; Audisio, M.; Rapetti, S.; et al. Italian survey on the clinical management of non-small cell lung cancer patients during the COVID-19 pandemic: A lesson for the second wave. Crit. Rev. Oncol. Hematol. 2021, 157, 103189. [Google Scholar] [CrossRef]
- Sanchez-Pina, J.M.; Rodríguez Rodriguez, M.; Castro Quismondo, N.; Gil Manso, R.; Colmenares, R.; Gil Alos, D.; Paciello, M.L.; Zafra, D.; Garcia-Sanchez, C.; Villegas, C.; et al. Clinical course and risk factors for mortality from COVID-19 in patients with haematological malignancies. Eur. J. Haematol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Callegaro, D.; Raut, C.P.; Keung, E.Z.; Kim, T.; Le Pechoux, C.; Martin-Broto, J.; Gronchi, A.; Swallow, C.; Gladdy, R. Strategies for care of patients with gastrointestinal stromal tumor or soft tissue sarcoma during COVID-19 pandemic: A guide for surgical oncologists. J. Surg. Oncol. 2021, 123, 12–23. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Morano, F.; Niger, M.; Corallo, S.; Antista, M.; Raimondi, A.; Prisciandaro, M.; Pagani, F.; Prinzi, N.; Nichetti, F.; et al. Systemic Treatment of Patients With Gastrointestinal Cancers During the COVID-19 Outbreak: COVID-19-adapted Recommendations of the National Cancer Institute of Milan. Clin. Colorectal Cancer 2020, 19, 156–164. [Google Scholar] [CrossRef]
- Fligor, S.C.; Wang, S.; Allar, B.G.; Tsikis, S.T.; Ore, A.S.; Whitlock, A.E.; Calvillo-Ortiz, R.; Arndt, K.R.; Gangadharan, S.P.; Callery, M.P. Gastrointestinal Malignancies and the COVID-19 Pandemic: Evidence-Based Triage to Surgery. J. Gastrointest. Surg. 2020, 24, 2357–2373. [Google Scholar] [CrossRef]
- Gebbia, V.; Piazza, D.; Valerio, M.R.; Borsellino, N.; Firenze, A. Patients With Cancer and COVID-19: A WhatsApp Messenger-Based Survey of Patients’ Queries, Needs, Fears, and Actions Taken. JCO Glob. Oncol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Torrón, C.; García-Gutiérrez, V.; Tenorio-Núñez, M.C.; Moreno-Jiménez, G.; López-Jiménez, F.J.; Herrera-Puente, P. Poor outcome in patients with acute leukemia on intensive chemotherapy and COVID-19. Bone Marrow Transplant. 2020, 56, 267–269. [Google Scholar] [CrossRef]
- Jin, X.H.; Zheng, K.I.; Pan, K.H.; Xie, Y.P.; Zheng, M.H. COVID-19 in a patient with chronic lymphocytic leukaemia. Lancet Haematol. 2020, 7, e351–e352. [Google Scholar] [CrossRef]
- Baruchel, A.; Bertrand, Y.; Boissel, N.; Brethon, B.; Ducassou, S.; Gandemer, V.; Halfon-Domenech, C.; Leblanc, T.; Leverger, G.; Michel, G.; et al. COVID-19 and acute lymphoblastic leukemias of children and adolescents: First recommendations of the Leukemia committee of the French Society for the fight against Cancers and Leukemias in children and adolescents (SFCE). Bull. Cancer 2020. [Google Scholar] [CrossRef] [PubMed]
- Yigenoglu, T.N.; Ata, N.; Altuntas, F.; Bascı, S.; Dal, M.S.; Korkmaz, S.; Namdaroglu, S.; Basturk, A.; Hacıbekiroglu, T.; Dogu, M.H.; et al. The outcome of COVID-19 in patients with hematological malignancy. J. Med. Virol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Infante, M.S.; González-Gascón y Marín, I.; Muñoz-Novas, C.; Churruca, J.; Foncillas, M.Á.; Landete, E.; Marín, K.; Ryan, P.; Hernández-Rivas, J.Á. COVID-19 in patients with hematological malignancies: A retrospective case series. Int. J. Lab. Hematol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Samur, M.K.; Martinez-Lopez, J.; Cook, G.; Biran, N.; Yong, K.; Hungria, V.; Engelhardt, M.; Gay, F.; Feria, A.G.; et al. Clinical features associated with COVID-19 outcome in multiple myeloma: First results from the International Myeloma Society data set. Blood 2020. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, M.; Shoumariyeh, K.; Rösner, A.; Ihorst, G.; Biavasco, F.; Meckel, K.; von Metzler, I.; Theurich, S.; Hebart, H.; Grube, M.; et al. Clinical characteristics and outcome of multiple myeloma patients with concomitant COVID-19 at Comprehensive Cancer Centers in Germany. Haematologica 2020, 105, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Albiges, L.; Foulon, S.; Bayle, A.; Gachot, B.; Pommeret, F.; Willekens, C.; Stoclin, A.; Merad, M.; Griscelli, F.; Lacroix, L.; et al. Determinants of the outcomes of patients with cancer infected with SARS-CoV-2: Results from the Gustave Roussy cohort. Nat. Cancer 2020. [Google Scholar] [CrossRef]
- Gosain, R.; Abdou, Y.; Singh, A.; Rana, N.; Puzanov, I.; Ernstoff, M.S. COVID-19 and Cancer: A Comprehensive Review. Curr. Oncol. Rep. 2020, 22, 53. [Google Scholar] [CrossRef]
- Clark, J.J.; Dwyer, D.; Pinwill, N.; Clark, P.; Johnson, P.; Hackshaw, A. The effect of clinical decision making for initiation of systemic anticancer treatments in response to the COVID-19 pandemic in England: A retrospective analysis. Lancet Oncol. 2021. [Google Scholar] [CrossRef]
- Gupta, K.; Gandhi, S.; Mebane, A.; Singh, A.; Vishnuvardhan, N.; Patel, E. Cancer patients and COVID-19: Mortality, serious complications, biomarkers, and ways forward. Cancer Treat. Res. Commun. 2021. [Google Scholar] [CrossRef]
- Hartman, H.E.; Sun, Y.; Devasia, T.P.; Chase, E.C.; Jairath, N.K.; Dess, R.T.; Jackson, W.C.; Morris, E.; Li, P.; Hochstedler, K.A.; et al. Integrated Survival Estimates for Cancer Treatment Delay among Adults with Cancer during the COVID-19 Pandemic. JAMA Oncol. 2020. [Google Scholar] [CrossRef]
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper coordination compounds as biologically active agents. Int. J. Mol. Sci. 2020, 21, 3965. [Google Scholar] [CrossRef]
- Yoo, J.E.; Han, K.; Shin, D.W.; Park, S.H.; Cho, I.Y.; Yoon, D.W.; Cho, J.; Jung, K.W. Conditional relative survival and competing mortality in patients who underwent surgery for lung cancer: A nationwide cohort study. Int. J. Cancer 2021. [Google Scholar] [CrossRef]
- Yang, X.; Man, J.; Chen, H.; Zhang, T.; Yin, X.; He, Q.; Lu, M. Temporal trends of the lung cancer mortality attributable to smoking from 1990 to 2017: A global, regional and national analysis. Lung Cancer 2021. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Winslow, M.M.; Sage, J. Mechanisms of small cell lung cancer metastasis. EMBO Mol. Med. 2020. [Google Scholar] [CrossRef]
- American Society of Health System Pharmacists. AHFS Drug Information; Bethesda: Rockville, MD, USA, 2009. [Google Scholar]
- Kudryavtseva, M.V.; Bezborodkina, N.N.; Okovity, S.V.; Kudryavtsey, B.N. Effects of the 2-ethylthiobenzimidazole hydrobromide (bemithyl) on carbohydrate metabolism in cirrhotic rat liver. Exp. Toxicol. Pathol. 2003. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Xu, W.; Wang, J.; Ali, S.F.; Angulo, J.A. The neurokinin-1 receptor modulates the methamphetamine-induced striatal apoptosis and nitric oxide formation in mice. J. Neurochem. 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhaldi, A.A.M.; Al-Sanea, M.M.; Nocentini, A.; Eldehna, W.M.; Elsayed, Z.M.; Bonardi, A.; Abo-Ashour, M.F.; El-Damasy, A.K.; Abdel-Maksoud, M.S.; Al-Warhi, T.; et al. 3-Methylthiazolo[3,2-a]benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: Design, synthesis, biological and molecular modeling studies. Eur. J. Med. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pragathi, Y.J.; Veronica, D.; Anitha, K.; Rao, M.V.B.; Raju, R.R. Synthesis and biological evaluation of chalcone derivatives of 1,2,4-thiadiazol-benzo[d]imidazol-2-yl)quinolin-2(1H)-one as anticancer agents. Chem. Data Collect. 2020, 30, 100556. [Google Scholar] [CrossRef]
- Sridhar Goud, N.; Pooladanda, V.; Muni Chandra, K.; Lakshmi Soukya, P.S.; Alvala, R.; Kumar, P.; Nagaraj, C.; Dawn Bharath, R.; Qureshi, I.A.; Godugu, C.; et al. Novel benzimidazole-triazole hybrids as apoptosis inducing agents in lung cancer: Design, synthesis, 18F-radiolabeling & galectin-1 inhibition studies. Bioorg. Chem. 2020. [Google Scholar] [CrossRef]
- Haoran, W.; Akhtar, W.; Nainwal, L.M.; Kaushik, S.K.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Synthesis and biological evaluation of benzimidazole pendant cyanopyrimidine derivatives as anticancer agents. J. Heterocycl. Chem. 2020. [Google Scholar] [CrossRef]
- Plumb, J.A. Cell Sensitivity Assays: Clonogenic Assay. Methods Mol. Med. 2004, 88, 159–164. [Google Scholar] [CrossRef]
- Girek, M.; Kłosiński, K.; Grobelski, B.; Pizzimenti, S.; Cucci, M.A.; Daga, M.; Barrera, G.; Pasieka, Z.; Czarnecka, K.; Szymański, P. Novel tetrahydroacridine derivatives with iodobenzoic moieties induce G0/G1 cell cycle arrest and apoptosis in A549 non-small lung cancer and HT-29 colorectal cancer cells. Mol. Cell. Biochem. 2019, 460, 123–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstock, H.M.; Stockbauer, R.; Parr, A.C. Unimolecular kinetics of pyridine ion fragimentation. Int. J. Mass Spectrom. Ion Phys. 1981, 38, 323–331. [Google Scholar] [CrossRef]
- Zhou, S.; Shen, S.; Zhao, D.; Zhang, Z.; Yan, S. Evaporation and decomposition of eutectics of cupric chloride and sodium chloride. J. Therm. Anal. Calorim. 2017, 129, 1445–1452. [Google Scholar] [CrossRef]
Complex | Cytotoxicity Activity [μM] |
---|---|
1 | 608.7 +/− 65.17 * |
2 | 319.33 +/− 31.08 * |
3 | 342.03 +/− 17.69 * |
4 | 264.32 +/− 36.57 * |
etoposide | 451.47 +/− 18.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raducka, A.; Czylkowska, A.; Gobis, K.; Czarnecka, K.; Szymański, P.; Świątkowski, M. Characterization of Metal-Bound Benzimidazole Derivatives, Effects on Tumor Cells of Lung Cancer. Materials 2021, 14, 2958. https://doi.org/10.3390/ma14112958
Raducka A, Czylkowska A, Gobis K, Czarnecka K, Szymański P, Świątkowski M. Characterization of Metal-Bound Benzimidazole Derivatives, Effects on Tumor Cells of Lung Cancer. Materials. 2021; 14(11):2958. https://doi.org/10.3390/ma14112958
Chicago/Turabian StyleRaducka, Anita, Agnieszka Czylkowska, Katarzyna Gobis, Kamila Czarnecka, Paweł Szymański, and Marcin Świątkowski. 2021. "Characterization of Metal-Bound Benzimidazole Derivatives, Effects on Tumor Cells of Lung Cancer" Materials 14, no. 11: 2958. https://doi.org/10.3390/ma14112958
APA StyleRaducka, A., Czylkowska, A., Gobis, K., Czarnecka, K., Szymański, P., & Świątkowski, M. (2021). Characterization of Metal-Bound Benzimidazole Derivatives, Effects on Tumor Cells of Lung Cancer. Materials, 14(11), 2958. https://doi.org/10.3390/ma14112958