Flexible Theoretical Calculation of Loop Length and Area Density of Weft-Knitted Structures: Part I
Abstract
:1. Introduction
- The plane projection (two-dimensional form) of the yarn, bent into the loop, coincides with its three-dimensional form;
- The yarn bent into the loop has a cylindrical shape; its diameter over the entire length is circular and constant;
- The yarn elasticity over the entire length is constant;
- The loop length is equal to the length of the yarn axis.
2. Materials and Methods
3. Results and Discussions
3.1. Theoretical Calculation of Weft-Knitted Loop Length
3.2. Theoretical Calculation of Weft-Knitted Fabric Area Density
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikucioniene, D.; Halavska, L.; Bobrova, S.; Ielina, T.; Milasius, R. Ultra-strong knits for personal protective equipment. Appl. Sci. 2020, 10, 6197. [Google Scholar] [CrossRef]
- Dalidovich, A.S. Theory and Analysis of Knitted Patterns; Gizlegprom: Moscow, Russia, 1934. (In Russian) [Google Scholar]
- Pierce, F.T. Geometrical principles applicable to the design of functional fabrics. Text. Res. J. 1947, 17, 123–147. [Google Scholar] [CrossRef]
- Chamberlain, J. Hosiery Yarns and Fabrics; Leicester College of Technology and Commerce: Leicester, UK, 1949; Volume II. [Google Scholar]
- Doyle, P.J. Fundamental aspects of the design of knitted fabrics. J. Text. Inst. 1953, 44, 561–578. [Google Scholar]
- Leaf, G.A.V.; Glaskin, A. Geometry of a plain-knitted loop. J. Text. Inst. 1955, 46, 587–605. [Google Scholar] [CrossRef]
- Leaf, G.A.V. Models of the plain-knitted loop. J. Text. Inst. 1960, 51, 49–58. [Google Scholar] [CrossRef]
- Munden, D.L. The geometry and dimensional properties of plain knitted fabric. J. Text. Inst. 1959, 50, T448–T471. [Google Scholar] [CrossRef]
- Postle, R.; Munden, D.L. Analysis of the dry relaxed knitted loop configuration. J. Text. Inst. 1967, 58, 329–365. [Google Scholar] [CrossRef]
- Shanahan, W.J.; Postle, R. A theoretical analysis of the plain-knitted structure. Text. Res. J. 1970, 40, 656–663. [Google Scholar] [CrossRef]
- Ciukas, R. Design of knitted fabrics. Fibres Text. East. Eur. 1997, 5, 37–39. [Google Scholar]
- Ciukas, R.; Sadauskas, D. Theoretical determination of area density and tightness factor for weft knitted fabrics. In Proceedings of the International Textile, Clothing and Design Conference, Dubrovnik, Croatia, 3–6 October 2004; pp. 669–674. [Google Scholar]
- Kurbak, A.; Amreeva, G. Creation of a geometrical model for milano rib fabric. Text. Res. J. 2006, 76, 847–852. [Google Scholar] [CrossRef]
- Vassiliadis, S.G.; Kallivretaki, A.E.; Provatidis, C.G. Geometrical modelling of plain weft knitted fabrics. Indian J. Fibre Text. Res. 2007, 32, 62–71. [Google Scholar]
- Kurbak, A.; Soydan, A.S. Basic studies for modeling complex weft knitted fabric structures Part III: A geometrical model for 1 × 1 purl fabrics. Text. Res. J. 2008, 78, 377–381. [Google Scholar] [CrossRef]
- Kurbak, A. Geometrical and mechanical modelings of dry relaxed slack plain-knitted fabrics for the benefit of technical textile applications Part I: A geometrical model. Text. Res. J. 2017, 87, 838–852. [Google Scholar] [CrossRef]
- Mikucioniene, D.; Ciukas, R.; Mickeviciene, A. The influence of knitting structure on mechanical properties of weft knitted fabrics. Mater. Sci. 2010, 16, 221–225. [Google Scholar]
- Mikucioniene, D.; Arbataitis, E. Comparative analysis of the influence of bamboo and other cellulose fibres on selected structural parameters and physical properties of knitted fabrics. Fibres Text. East. Eur. 2013, 21, 76–80. [Google Scholar]
- Berenguer, J.L.; Diaz-Garcia, P.; Martinez, P.M. Determining the loop length during knitting and dyeing processes. Text. Res. J. 2021, 91, 188–199. [Google Scholar] [CrossRef]
- Berenguer, J.L.; Martınez, P.M.; Dıaz-Garcıa, P. Modelling loop length in weft-knitted fabrics with an interlock structure after the dyeing process with a stitch density, wales and courses per centimetre analysis. J. Text. Inst. 2020, 111, 934–940. [Google Scholar] [CrossRef]
- Jong, S.; Postle, R. An energy analysis of the mechanics of weft-knitted fabrics by means of optimal-control theory. J. Text. Inst. 1977, 68, 307–329. [Google Scholar] [CrossRef]
- Choi, K.F.; Lo, T.Y. An energy model of plain knitted fabric. Text. Res. J. 2003, 73, 739–748. [Google Scholar] [CrossRef]
- Kurbak, A. Geometrical and mechanical modelings of dry relaxed slack plain knitted fabrics for the benefit of technical textile applications Part II: Mechanical modeling induced by friction. Text. Res. J. 2017, 87, 853–864. [Google Scholar] [CrossRef]
- Bobrova, S.; Ielina, T.; Beskin, N.; Bezsmertna, V.; Halavska, L. The use of 3D geometric models in special purpose knitwear design and predicting of its properties. Vlákna Text. (Fibres Text.) 2018, 25, 19–26. [Google Scholar]
- Ciukas, R.; Tvarijonaviciene, B.; Mikucioniene, D. Estimating the linear density of fancy ribbon-type yarns and the structure indices of fabrics knitted from them. Fibres Text. East. Eur. 2006, 14, 41–43. [Google Scholar]
- Čiukas, R. Design of Knits: Monograph; Technologija: Kaunas, Lithuania, 1996; p. 152. (In Lithuanian) [Google Scholar]
Pattern. | Yarn Diameter d, mm | Wale Density Pw, cm−1 | Course Density Pc, cm−1 | Wale Spacing A, mm | Course Spacing B, mm | Loop Length l, mm | Area Density M, g/m2 |
---|---|---|---|---|---|---|---|
Rib 1 × 1 | 0.4 | 11.3 ± 0.2 | 8.0 ± 0.1 | 0.88 | 1.25 | 6.1 ± 0.2 | 449.8 ± 4 |
Rib 1 × 2 | 11.0 ± 0.2 | 8.2 ± 0.2 | 0.91 | 1.22 | 6.2 ± 0.2 | 424.6 ± 4 | |
Rib 2 × 2 | 12.8 ± 0.2 | 8.4 ± 0.1 | 0.78 | 1.19 | 5.7 ± 0.2 | 491.2 ± 4 | |
Rib 3 × 3 | 16.7 ± 0.2 | 8.5 ± 0.2 | 0.60 | 1.18 | 5.5 ± 0.3 | 618.0 ± 5 | |
Purl 1 × 1 | 5.1 ± 0.1 | 5.3 ± 0.3 | 1.96 | 1.89 | 7.8 ± 0.3 | 292.0 ± 6 | |
Moss-stitch purl | 5.3 ± 0.2 | 10.2 ± 0.2 | 1.89 | 0.98 | 6.7 ± 0.2 | 287.1 ± 5 |
Pattern | Number of One-Needle Bar Needle Loops Nls | Number of Two-Needle Bar Needle Loops Nld | Number of Horizontal Floats Nlh | Number of Rib Floats Nlr |
---|---|---|---|---|
Rib 1 × 1 | - | 2 | - | 2 |
Rib 1 × 2 | - | 3 | 1 | 2 |
Rib 2 × 2 | - | 4 | 2 | 2 |
Rib 3 × 3 | 2 | 4 | 4 | 2 |
Purl 1 × 1 | 2 | - | 2 | - |
Moss-stitch purl | - | 4 | - | 4 |
Pattern | One-Bar Needle Loop ls, mm | Two-Bars Needle Loop ld, mm | Horizontal Float lh, mm | Rib Float lr, mm |
---|---|---|---|---|
Rib 1 × 1 | - | 4.33 | - | 1.88 |
Rib 1 × 2 | - | 4.34 | 1.36 | 1.89 |
Rib 2 × 2 | - | 4.21 | 1.24 | 1.88 |
Rib 3 × 3 | 3.45 | 4.39 | 1.10 | 1.89 |
Purl 1 × 1 | 5.94 | - | 2.17 | - |
Moss-stitch purl | - | 4.87 | - | 1.98 |
Pattern | Yarn Length in the Pattern Repeat LY, mm | Average Loop Length in the Pattern Repeat , mm | Relative Error between Theoretical and Experimental Values, % |
---|---|---|---|
Rib 1 × 1 | 12.42 | 6.21 | 1.80 |
Rib 1 × 2 | 18.16 | 6.05 | 2.42 |
Rib 2 × 2 | 23.10 | 5.78 | 1.40 |
Rib 3 × 3 | 32.64 | 5.44 | 1.09 |
Purl 1 × 1 | 16.22 | 8.11 | 3.97 |
Moss-stitch purl | 27.38 | 6.85 | 2.24 |
Pattern | Theoretically Calculated Area Density M, g/m2 | Experimentally Measured Area Density, g/m2 | Relative Error between Theoretical and Experimental Values, % |
---|---|---|---|
Rib 1 × 1 | 449.28 | 449.8 ± 4 | 0.12 |
Rib 1 × 2 | 424.84 | 424.6 ± 4 | 0.06 |
Rib 2 × 2 | 496.78 | 491.2 ± 4 | 1.14 |
Rib 3 × 3 | 617.81 | 618.0 ± 5 | 0.03 |
Purl 1 × 1 | 292.21 | 292.0 ± 6 | 0.07 |
Moss-stitch purl | 296.05 | 287.1 ± 5 | 3.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arbataitis, E.; Mikucioniene, D.; Halavska, L. Flexible Theoretical Calculation of Loop Length and Area Density of Weft-Knitted Structures: Part I. Materials 2021, 14, 3059. https://doi.org/10.3390/ma14113059
Arbataitis E, Mikucioniene D, Halavska L. Flexible Theoretical Calculation of Loop Length and Area Density of Weft-Knitted Structures: Part I. Materials. 2021; 14(11):3059. https://doi.org/10.3390/ma14113059
Chicago/Turabian StyleArbataitis, Edgaras, Daiva Mikucioniene, and Liudmyla Halavska. 2021. "Flexible Theoretical Calculation of Loop Length and Area Density of Weft-Knitted Structures: Part I" Materials 14, no. 11: 3059. https://doi.org/10.3390/ma14113059
APA StyleArbataitis, E., Mikucioniene, D., & Halavska, L. (2021). Flexible Theoretical Calculation of Loop Length and Area Density of Weft-Knitted Structures: Part I. Materials, 14(11), 3059. https://doi.org/10.3390/ma14113059