Impact of Graphene Oxide on Zero Shear Viscosity, Fatigue Life and Low-Temperature Properties of Asphalt Binder
Abstract
:1. Introduction
- To investigate the impact of GO incorporation into the asphalt binder on the ZSV value through the steady shear test method;
- To investigate the impact of GO incorporation into the asphalt binder on fatigue performance using the Superpave parameter (G*sinδ) and LAS test approach;
- To evaluate the low-temperature cracking performance of GO-modified asphalt binders in terms of creep rate (m-value) and creep stiffness (S) using the bending beam rheometer testing;
- To investigate the impact of GO on the storage stability of asphalt binder using the separation test.
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Experimental Methods
2.3.1. Steady Shear Test
2.3.2. Superpave Fatigue Test
2.3.3. Linear Amplitude Sweep (LAS) Test
2.3.4. Bending Beam Rheometer (BBR)
2.3.5. Storage Stability Test
3. Results and Discussion
3.1. Zero Shear Viscosity
3.2. Superpave Fatigue Parameter
3.3. Linear Amplitude Sweep Test
3.4. BBR Test
3.5. Storage Stability
4. Conclusions
- GO modification increased the steady shear viscosity and the shear-thinning behavior and reduced the Newtonian plateau zone of the asphalt binder. Moreover, the ZSV values of the GO-modified binders were higher than that of the control asphalt binder, indicating that GO can increase the resistance of the asphalt to rutting deformation.
- The significant improvement in Superpave fatigue parameter (G*sinδ) and LAS fatigue life (Nf) revealed that adding GO into the asphalt binder can enhance the fatigue performance.
- The results of the BBR test showed that the incorporation of GO increased the relaxation parameter (m-value) and decreased the creep stiffness, indicating a significant contribution to thermal cracking resistance at low temperatures.
- The results suggested that 2% GO was the optimal content for improving the binder performance.
- Storage stability analysis revealed that GO-modified binders would resist phase separation when stored at high-temperature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duan, H.; Zhu, C.; Li, Y.; Zhang, H.; Zhang, S.; Xiao, F. Effect of crumb rubber percentages and bitumen sources on high-temperature rheological properties of less smell crumb rubber modified bitumen. Constr. Build. Mater. 2021, 277, 122248. [Google Scholar] [CrossRef]
- Yang, X.; You, Z. High temperature performance evaluation of bio-oil modified asphalt binders using the DSR and MSCR tests. Constr. Build. Mater. 2015, 76, 380–387. [Google Scholar] [CrossRef]
- Airey, G.D. Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Constr. Build. Mater. 2002, 16, 473–487. [Google Scholar] [CrossRef]
- Kou, C.; Wu, X.; Xiao, P.; Liu, Y.; Wu, Z. Physical, rheological, and morphological properties of asphalt reinforced by basalt fiber and lignin fiber. Materials 2020, 13, 2520. [Google Scholar] [CrossRef]
- Fang, C.; Yu, R.; Liu, S.; Li, Y. Nanomaterials applied in asphalt modification: A review. J. Mater. Sci. Technol. 2013, 29, 589–594. [Google Scholar] [CrossRef]
- Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials—A review. Constr. Build. Mater. 2017, 143, 633–648. [Google Scholar] [CrossRef]
- Amirkhanian, A.N.; Xiao, F.; Amirkhanian, S.N. Characterization of unaged asphalt binder modified with carbon nano particles. Int. J. Pavement Res. Technol. 2011, 4, 281–286. [Google Scholar]
- Ashish, P.K.; Singh, D. High- and Intermediate-Temperature Performance of Asphalt Binder Containing Carbon Nanotube Using Different Rheological Approaches. J. Mater. Civ. Eng. 2018, 30, 04017254. [Google Scholar] [CrossRef]
- Ashish, P.K.; Singh, D.; Bohm, S. Investigation on influence of nanoclay addition on rheological performance of asphalt binder. Road Mater. Pavement Des. 2017, 18, 1007–1026. [Google Scholar] [CrossRef]
- Jeffry, S.N.A.; Jaya, R.P.; Hassan, N.A.; Yaacob, H.; Mirza, J.; Drahman, S.H. Effects of nanocharcoal coconut-shell ash on the physical and rheological properties of bitumen. Constr. Build. Mater. 2018, 158, 1–10. [Google Scholar] [CrossRef]
- Bala, N.; Napiah, M.; Kamaruddin, I. Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology. Int. J. Pavement Eng. 2018, 8436, 1–12. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, A.N.; Amirkhanian, S.N. Influence of Carbon Nanoparticles on the Rheological Characteristics of Short-Term Aged Asphalt Binders. J. Mater. Civ. Eng. 2011, 23, 423–431. [Google Scholar] [CrossRef]
- Yao, H.; You, Z.; Li, L.; Lee, C.H.; Wingard, D.; Yap, Y.K.; Shi, X.; Goh, S.W. Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. J. Mater. Civ. Eng. 2013, 25, 1619–1630. [Google Scholar] [CrossRef] [Green Version]
- Ziari, H.; Farahani, H.; Goli, A.; Sadeghpour Galooyak, S. The investigation of the impact of carbon nano tube on bitumen and HMA performance. Pet. Sci. Technol. 2014, 32, 2102–2108. [Google Scholar] [CrossRef]
- Khattak, M.J.; Khattab, A.; Rizvi, H.R.; Zhang, P. The impact of carbon nano-fiber modification on asphalt binder rheology. Constr. Build. Mater. 2012, 30, 257–264. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Motamedi, M.; Firouznia, M.; Isazadeh, M. Experimental investigation of the effect of asphalt binder modified with nanosilica on the rutting, fatigue and performance grade. Pet. Sci. Technol. 2019, 37, 1495–1500. [Google Scholar] [CrossRef]
- Filho, P.G.T.M.; dos Santos, A.T.R.; de Figueiredo Lopes Lucena, L.C.; de Sousa Neto, V.F. Rheological Evaluation of Asphalt Binder 50/70 Incorporated with Titanium Dioxide Nanoparticles. J. Mater. Civ. Eng. 2019, 31, 04019235. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, K.; Shi, X. Performance evaluation and modification mechanism analysis of asphalt binders modified by graphene oxide. Constr. Build. Mater. 2018, 163, 880–889. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, Z.; Li, Y.; Pang, L.; Amirkhanian, S.; Riara, M. Evaluation of Aging Resistance of Graphene Oxide Modified Asphalt. Appl. Sci. 2017, 7, 702. [Google Scholar] [CrossRef]
- Zeng, W.; Wu, S.; Pang, L.; Sun, Y.; Chen, Z. The utilization of graphene oxide in traditional construction materials: Asphalt. Materials 2017, 10, 48. [Google Scholar] [CrossRef]
- Adnan, A.M.; Luo, X.; Lü, C.; Wang, J. Physical properties of graphene-oxide modified asphalt and performance analysis of its mixtures using response surface methodology. Int. J. Pavement Eng. 2020, 0, 1–15. [Google Scholar] [CrossRef]
- Adnan, A.M.; Luo, X.; Lü, C.; Wang, J.; Huang, Z. Improving mechanics behavior of hot mix asphalt using graphene-oxide. Constr. Build. Mater. 2020, 254, 119261. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Amirkhanian, S. Investigation of the graphene oxide and asphalt interaction and its effect on asphalt pavement performance. Constr. Build. Mater. 2018, 165, 572–584. [Google Scholar] [CrossRef]
- Singh, D.; Kuity, A.; Girimath, S.; Suchismita, A.; Showkat, B. Investigation of Chemical, Microstructural, and Rheological Perspective of Asphalt Binder Modified with Graphene Oxide. J. Mater. Civ. Eng. 2020, 32, 04020323. [Google Scholar] [CrossRef]
- Habib, N.Z.; Aun, N.C.; Zoorob, S.E.; Lee, P.I. Use of Graphene Oxide as a Bitumen Modifier: An Innovative Process Optimization Study. Adv. Mater. Res. 2015, 1105, 365–369. [Google Scholar] [CrossRef]
- Shenoy, A. Model-fitting the master curves of the dynamic shear rheometer data to extract a rut-controlling term for asphalt pavements. J. Test. Eval. 2002, 30, 95–102. [Google Scholar]
- Biro, S.; Gandhi, T.; Amirkhanian, S. Determination of zero shear viscosity of warm asphalt binders. Constr. Build. Mater. 2009, 23, 2080–2086. [Google Scholar] [CrossRef]
- Rowe, G.M.; Rowe, G.M.; D’Angelo, J.A.; Sharrock, M.J. Use of the zero shear viscosity as a parameter for the high temperature binder specification parameter. In 3rd Int. Symp. on Binder Rheology and Pavement Performance; Abatech Consulting Engineer: Blooming Glen, PA, USA, 2002. [Google Scholar]
- Giuliani, F.; Merusi, F.; Antunes, I. Creep flow behavior of asphalt rubber binder. The zero-shear viscosity analysis. In Proceedings of the Asphalt Rubber Conference, Parma, Italy, 25 October 2006; pp. 1–13. [Google Scholar]
- De Visscher, J.; Vanelstraete, A. Practical test methods for measuring the zero shear viscosity of bituminous binders. Mater. Struct. Constr. 2004, 37, 360–364. [Google Scholar] [CrossRef]
- Vlachovicova, Z.; Wekumbura, C.; Stastna, J.; Zanzotto, L. Creep characteristics of asphalt modified by radial styrene-butadiene-styrene copolymer. Constr. Build. Mater. 2007, 21, 567–577. [Google Scholar] [CrossRef]
- Wen, H.; Bahia, H. Characterizing fatigue of asphalt binders with viscoelastic continuum damage mechanics. Transp. Res. Rec. 2009, 5, 55–62. [Google Scholar] [CrossRef]
- Hintz, C.; Velasquez, R.; Johnson, C.; Bahia, H. Modification and validation of linear amplitude sweep test for binder fatigue specification. Transp. Res. Rec. 2011, 2207, 99–106. [Google Scholar] [CrossRef]
- ASTM D5. Standard Test Method for Penetration of Bituminous Materials; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM D36. Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus); ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM D4402. Standard Test Method for Viscosity Determination Using a Rotational Viscometer; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM D113. Standard Test Method for Ductility of Bituminous Materials; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ASTM D7175. Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Liu, G.; Wu, S.; van de Ven, M.; Yu, J.; Molenaar, A. Influence of sodium and organo-montmorillonites on the properties of bitumen. Appl. Clay Sci. 2010, 49, 69–73. [Google Scholar] [CrossRef]
- Parvez, M.A.; Wahhab, H.I.A.-A.; Shawabkeh, R.A.; Hussein, I.A. Asphalt modification using acid treated waste oil fly ash. Constr. Build. Mater. 2014, 70, 201–209. [Google Scholar] [CrossRef]
- Bhat, F.S.; Mir, M.S. Rheological investigation of asphalt binder modified with nanosilica. Int. J. Pavement Res. Technol. 2021, 14, 276–287. [Google Scholar] [CrossRef]
- AASHTO. AASHTO TP 101-14: Standard Method of Test for Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep; American Association of State and Highway Transportation Officials: Washington, DC, USA, 2014. [Google Scholar]
- AASHTO. AASHTO T313-12: Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR); American Association of State Highway and Transportation Officials: Washington, DC, USA, 2015. [Google Scholar]
Material | Property | Value | Requirement | Method |
---|---|---|---|---|
Base binder | Penetration at 25 °C (0.1 mm) | 68.5 | 60–70 | ASTM D5 [34] |
Softening point (°C) | 49 | 49 (Min) | ASTM D36 [35] | |
Viscosity at 135 °C (Pa s) | 0.55 | <3 Pa s | ASTM D4402 [36] | |
Ductility at 25 °C (cm) | 138 | 100 (Min) | ASTM D113 [37] | |
Rutting factor, G*/sin δ (Pa) at 64 °C | 1649.7 | >1 kPa | ASTM D7175 [38] | |
GO | Purity (%) | >95 | – | – |
Layer | 1–5 | – | – | |
Thickness (nm) | 1.0–1.77 | – | – | |
Diameter (µm) | 10–50 | – | – | |
SSA (m2/g) | 300–450 | – | – |
Binder Type | s | Regression Coefficient, R2 | ||
---|---|---|---|---|
Asphalt 70 | 257.7 | 9 | 0.60 | 0.997 |
Asphalt 70 + 0.5% GO | 1715.6 | 1.7 | 0.45 | 0.993 |
Asphalt 70 + 1% GO | 2194.1 | 1.58 | 0.39 | 0.982 |
Asphalt 70 + 1.5% GO | 3097.4 | 0.9 | 0.41 | 0.994 |
Asphalt 70 + 2% GO | 4984.6 | 0.52 | 0.34 | 0.996 |
Asphalt 70 + 2.5% GO | 3392.2 | 0.78 | 0.40 | 0.980 |
Binder Type | Softening Point (°C) | Softening Point Top (°C) | Softening Point Bottom (°C) | SPD (°C) |
---|---|---|---|---|
Asphalt 70 + 0.5% GO | 49.4 | 50.8 | 50.4 | 0.4 |
Asphalt 70 + 1% GO | 50.1 | 51.9 | 51.6 | 0.3 |
Asphalt 70 + 1.5% GO | 51.9 | 53.0 | 52.8 | 0.2 |
Asphalt 70 + 2% GO | 53.0 | 54.4 | 54.6 | 0.2 |
Asphalt 70 + 2.5% GO | 51.4 | 52.9 | 52.6 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, A.M.; Lü, C.; Luo, X.; Wang, J. Impact of Graphene Oxide on Zero Shear Viscosity, Fatigue Life and Low-Temperature Properties of Asphalt Binder. Materials 2021, 14, 3073. https://doi.org/10.3390/ma14113073
Adnan AM, Lü C, Luo X, Wang J. Impact of Graphene Oxide on Zero Shear Viscosity, Fatigue Life and Low-Temperature Properties of Asphalt Binder. Materials. 2021; 14(11):3073. https://doi.org/10.3390/ma14113073
Chicago/Turabian StyleAdnan, Abbas Mukhtar, Chaofeng Lü, Xue Luo, and Jinchang Wang. 2021. "Impact of Graphene Oxide on Zero Shear Viscosity, Fatigue Life and Low-Temperature Properties of Asphalt Binder" Materials 14, no. 11: 3073. https://doi.org/10.3390/ma14113073
APA StyleAdnan, A. M., Lü, C., Luo, X., & Wang, J. (2021). Impact of Graphene Oxide on Zero Shear Viscosity, Fatigue Life and Low-Temperature Properties of Asphalt Binder. Materials, 14(11), 3073. https://doi.org/10.3390/ma14113073