Effect of Nanoparticle Size on the Mechanical Strength of Ni–Graphene Composites
Abstract
:1. Introduction
Ref. | Materials | Production Method | Mechanical Properties |
---|---|---|---|
[10] | Graphene-enabled | Compressed and sintered | = 780 MPa |
Ni/NiC composite | at 1723 K | = 1095 MPa | |
E = 222 GPa | |||
[14] | (1) Graphene thickness | Electrochemical deposition | HV = 4.6 GPa |
3–5 nm | E = 240 GPa | ||
(2) Graphene thickness | Casting and fraction stirring | HV = 66 kg mm | |
10–20 nm (1.2 vol.%) | |||
(3) Graphene thickness | Semi-powder metallurgy | = 197 MPa | |
5–15 nm (0.3 wt.%) | |||
(4) Graphene thickness | Hot extrusion | = 238 MPa | |
5–15 nm (0.3 wt.%) | |||
[15] | Graphene/Ni composite | Pulse-reverse electrodeposition | HV = 1036.9 MPa |
1.2 nm thick | E = 185 GPa | ||
[16] | Graphene/Ni powders | (1) Cold pressing and | HV = 1.56 GPa |
annealing at 1523 K | |||
(2) Cold pressing, annealing and | = 1048 MPa | ||
high pressure torsion at 296 K | = 1201 MPa | ||
(3) Cold pressing, annealing and | = 923 MPa | ||
high pressure torsion at 473 K | = 992 MPa | ||
[17] | Graphene nanoplatelets/Ni | Powder metallurgy route | HV = 1.65 GPa |
nanocomposite powders | followed by the spark plasma | = 370 MPa | |
sintering process at 1073 K |
2. Materials and Methods
3. Results
3.1. Hydrostatic Tension
3.2. Uniaxial Tension along the x-Axis
3.3. Uniaxial Tension along the y-Axis
3.4. Uniaxial Tension along the z-Axis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MD | Molecular Dynamics |
CG | Crumpled Graphene |
GF | Graphene Flake |
References
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Mazilova, T.; Sadanov, E.; Mikhailovskij, I. Tensile strength of graphene nanoribbons: An experimental approach. Mater. Lett. 2019, 242, 17–19. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Singh, J.; Singh, G.; Pandey, P.M. Electric discharge machining using rapid manufactured complex shape copper electrode: Parametric analysis and process optimization for material removal rate, electrode wear rate and cavity dimensions. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 2459–2473. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, G.; Zhou, W.; Wang, W.; Wang, D.; Dong, A.; Shu, D.; Sun, B. An enhanced strength Ni matrix composite reinforced by a 3D network structure of TiN nano-particles. Mater. Des. 2020, 191, 108638. [Google Scholar] [CrossRef]
- Mousavi, T.; Dai, J.; Bazarnik, P.; Pereira, P.H.R.; Huang, Y.; Lewandowska, M.; Langdon, T.G. Fabrication and characterization of nanostructured immiscible Cu–Ta alloys processed by high-pressure torsion. J. Alloys Compd. 2020, 832, 155007. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Heim, F.M.; Bartlett, J.L.; Song, N.; Isheim, D.; Li, X. Bioinspired, graphene-enabled Ni composites with high strength and toughness. Sci. Adv. 2019, 5, eaav5577. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, F.; Wu, H.; Wang, W. Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface. Appl. Phys. Lett. 2014, 104, 231901. [Google Scholar] [CrossRef]
- Liu, S.; Wang, A.; Li, Q.; Wu, J.; Chiou, K.; Huang, J.; Luo, J. Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. Joule 2018, 2, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Güler, Ö.; Bağcı, N. A short review on mechanical properties of graphene reinforced metal matrix composites. J. Mater. Res. Technol. 2020, 9, 6808–6833. [Google Scholar] [CrossRef]
- Hu, Z.; Tong, G.; Lin, D.; Chen, C.; Guo, H.; Xu, J.; Zhou, L. Graphene-reinforced metal matrix nanocomposites—A review. Mater. Sci. Technol. 2016, 32, 930–953. [Google Scholar] [CrossRef]
- Li, J.; An, Z.; Wang, Z.; Toda, M.; Ono, T. Pulse-Reverse Electrodeposition and Micromachining of Graphene–Nickel Composite: An Efficient Strategy toward High-Performance Microsystem Application. ACS Appl. Mater. Interfaces 2016, 8, 3969–3976. [Google Scholar] [CrossRef]
- Archakov, I.Y.; Kazykhanov, V.U.; Konakov, V.G.; Kurapova, O.Y.; Medvedev, A.E.; Murashkin, M.Y.; Novik, N.N.; Ovid’ko, I.A.; Solovyeva, E.; Valiev, R.Z. Microstructure and Mechanical Characteristics of Nanostructured Nickel-Graphene Composites Processed by High Pressure Torsion. Rev. Adv. Mater. Sci. 2017, 50, 13–23. [Google Scholar]
- Borkar, T.; Mohseni, H.; Hwang, J.; Scharf, T.W.; Tiley, J.S.; Hong, S.H.; Banerjee, R. Excellent strength–ductility combination in nickel-graphite nanoplatelet (GNP/Ni) nanocomposites. J. Alloys Compd. 2015, 646, 135–144. [Google Scholar] [CrossRef]
- Rezaei, R. Tensile mechanical characteristics and deformation mechanism of metal-graphene nanolayered composites. Comput. Mater. Sci. 2018, 151, 181–188. [Google Scholar] [CrossRef]
- Xiang, L.; Shen, Q.; Zhang, Y.; Bai, W.; Nie, C. One-step electrodeposited Ni-graphene composite coating with excellent tribological properties. Surf. Coat. Technol. 2019, 373, 38–46. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Gao, L.; Ma, T.; Qiu, M.; Hu, Y.; Wang, H.; Luo, J. A molecular dynamics study of lubricating mechanism of graphene nanoflakes embedded in Cu-based nanocomposite. Appl. Surf. Sci. 2020, 511, 145620. [Google Scholar] [CrossRef]
- Kamil, M.; Kim, M.; Ko, Y. Direct electro-co-deposition of Ni-reduced graphene oxide composite coating for anti-corrosion application. Mater. Lett. 2020, 273, 127911. [Google Scholar] [CrossRef]
- Ren, Z.; Meng, N.; Shehzad, K.; Xu, Y.; Qu, S.; Yu, B.; Luo, J.K. Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition. Nanotechnology 2015, 26, 065706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charleston, J.; Agrawal, A.; Mirzaeifar, R. Effect of interface configuration on the mechanical properties and dislocation mechanisms in metal graphene composites. Comput. Mater. Sci. 2020, 178, 109621. [Google Scholar] [CrossRef]
- Peng, W.; Sun, K. Effects of Cu/graphene interface on the mechanical properties of multilayer Cu/graphene composites. Mech. Mater. 2020, 141, 103270. [Google Scholar] [CrossRef]
- Yang, M.; Liu, Y.; Fan, T.; Zhang, D. Metal-graphene interfaces in epitaxial and bulk systems: A review. Prog. Mater. Sci. 2020, 110, 100652. [Google Scholar] [CrossRef]
- Vardanyan, V.H.; Urbassek, H.M. Dislocation interactions during nanoindentation of nickel-graphene nanocomposites. Comput. Mater. Sci. 2019, 170, 109158. [Google Scholar] [CrossRef]
- Agrawal, A.; Mirzaeifar, R. Graphene-Nickel interaction in layered metal-matrix composites. Surf. Sci. 2019, 688, 1–6. [Google Scholar] [CrossRef]
- Kurbanova, E.D.; Polukhin, V.A.; Galashev, A.E. The comparative analysis of dependence on temperature of diffusion and strength characteristics of graphene reinforced Al, Ni and Ti films. Lett. Mater. 2016, 6, 271–275. [Google Scholar] [CrossRef]
- Kurapova, O.; Smirnov, I.; Solovyeva, E.; Archakov, I.; Konakov, V. The effect of reduced graphene oxide (rGO) and thermally exfoliated graphite (TEFG) on the mechanical properties of “nickel-graphene” composites. Lett. Mater. 2020, 10, 164–169. [Google Scholar] [CrossRef]
- Chepkasov, I.V.; Gafner, Y.Y.; Kurbanova, E.D.; Polukhin, V.A. Study of the effect of ultrafast heating on the structure and shape of the gas phase synthesized Cu nanoparticless. Lett. Mater. 2014, 4, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Myasnichenko, V.S.; Razavi, M.; Outokesh, M.; Sdobnyakov, N.Y.; Starostenkov, M.D. Molecular dynamic investigation of size-dependent surface energy of icosahedral copper nanoparticles at different temperature. Lett. Mater. 2016, 6, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Lin, L.; Guo, R.; Bhalla, A.; Zeng, X. Numerical investigation of size effects on mechanical behaviors of Fe nanoparticles through an atomistic field theory. J. Micromechanics Mol. Phys. 2017, 02, 1750010. [Google Scholar] [CrossRef]
- Baimova, A.; Korznikova, E.A.; Dmitriev, S.V.; Liu, B.; Zhou, K. Review on crumpled graphene: Unique mechanical properties. Rev. Adv. Mater. Sci. 2014, 39, 69–83. [Google Scholar]
- Raghuraman, S.; Shah, S.A.; Green, M.J.; Felts, J.R. Mechanics of nanoscale crumpled graphene measured by Atomic Force Microscopy. Extrem. Mech. Lett. 2020, 40, 100873. [Google Scholar] [CrossRef]
- Tang, Z.; Li, X.; Sun, T.; Shen, S.; Huixin, X.; Yang, J. Porous crumpled graphene with hierarchical pore structure and high surface utilization efficiency for supercapacitor. Microporous Mesoporous Mater. 2018, 272, 40–43. [Google Scholar] [CrossRef]
- Baimova, J.A.; Rysaeva, L.K.; Liu, B.; Dmitriev, S.V.; Zhou, K. From flat graphene to bulk carbon nanostructures. Phys. Status Solidi 2015, 252, 1502–1507. [Google Scholar] [CrossRef]
- Xu, X.; Yang, J.; Zhou, X.; Jiang, S.; Chen, W.; Liu, Z. Highly crumpled graphene-like material as compression-resistant electrode material for high energy-power density supercapacitor. Chem. Eng. J. 2020, 397, 125525. [Google Scholar] [CrossRef]
- Chen, X.; Chen, B. Facile fabrication of crumpled graphene oxide nanosheets and its Platinum nanohybrids for high efficient catalytic activity. Environ. Pollut. 2018, 243, 1810–1817. [Google Scholar] [CrossRef]
- Safina, L.L.; Baimova, J.A. Molecular dynamics simulation of fabrication of Ni-graphene composite: Temperature effect. Micro Nano Lett. 2020, 15, 176–180. [Google Scholar] [CrossRef]
- Krylova, K.A.; Baimova, J.A.; Lobzenko, I.P.; Rudskoy, A.I. Crumpled graphene as a hydrogen storage media: Atomistic simulation. Phys. B Condens. Matter 2020, 583, 412020. [Google Scholar] [CrossRef]
- Samantara, A.K.; Sahu, S.C.; Ghosh, A.; Jena, B.K. Sandwiched graphene with nitrogen, sulphur co-doped CQDs: An efficient metal-free material for energy storage and conversion applications. J. Mater. Chem. A 2015, 3, 16961–16970. [Google Scholar] [CrossRef]
- Xu, C.; Wang, X.; Zhu, J. Graphene-Metal Particle Nanocomposites. J. Phys. Chem. C 2008, 112, 19841–19845. [Google Scholar] [CrossRef]
- Ming Tian, W.; Mei Li, S.; Wang, B.; Chen, X.; Hua Liu, J.; Yu, M. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Miner. Metall. Mater. 2016, 23, 723–729. [Google Scholar] [CrossRef]
- Shuang, F.; Aifantis, K.E. Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: A molecular dynamics study. Carbon 2021, 172, 50–70. [Google Scholar] [CrossRef]
- Choi, B.K.; Yoon, G.H.; Lee, S. Molecular dynamics studies of CNT-reinforced aluminum composites under uniaxial tensile loading. Compos. Part B Eng. 2016, 91, 119–125. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Liu, X.; Yang, Q.S. Dislocation-blocking mechanism for the strengthening and toughening of laminated graphene/Al composites. Comput. Mater. Sci. 2019, 160, 72–81. [Google Scholar] [CrossRef]
- Safina, L.; Baimova, J.; Krylova, K.; Murzaev, R.; Mulyukov, R. Simulation of metal-graphene composites by molecular dynamics: A review. Lett. Mater. 2020, 10, 351–360. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, C.; Pei, L.; Li, J.; Wang, R.; Tieu, K. The negative Poisson’s ratio and strengthening mechanism of nanolayered graphene/Cu composites. Carbon 2019, 143, 125–137. [Google Scholar] [CrossRef]
- Shuang, F.; Aifantis, K.E. Relating the strength of graphene/metal composites to the graphene orientation and position. Scr. Mater. 2020, 181, 70–75. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Wang, W.; Wu, H. Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon 2016, 107, 680–688. [Google Scholar] [CrossRef]
- Long, X.; Li, B.; Wang, L.; Huang, J.; Zhu, J.; Luo, S. Shock response of Cu/graphene nanolayered composites. Carbon 2016, 103, 457–463. [Google Scholar] [CrossRef]
- Safina, L.R.; Krylova, K.A.; Murzaev, R.T.; Baimova, J.A.; Mulyukov, R.R. Crumpled Graphene-Storage Media for Hydrogen and Metal Nanoclusters. Materials 2021, 14, 2098. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef] [Green Version]
- Girifalco, L.A.; Weizer, V.G. Application of the Morse Potential Function to Cubic Metals. Phys. Rev. 1959, 114, 687–690. [Google Scholar] [CrossRef]
- Katin, K.P.; Prudkovskiy, V.S.; Maslov, M.M. Molecular dynamics simulation of nickel-coated graphene bending. Micro Nano Lett. 2018, 13, 160–164. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Katin, K.P.; Maslov, M.M. Morse parameters for the interaction of metals with graphene and silicene. Phys. Lett. A 2019, 383, 252–258. [Google Scholar] [CrossRef]
- VMD—Visual Molecular Dynamics. Available online: https://www.ks.uiuc.edu/ (accessed on 1 June 2021).
- Los, J.H.; Zakharchenko, K.V.; Katsnelson, M.I.; Fasolino, A. Melting temperature of graphene. Phys. Rev. B 2015, 91. [Google Scholar] [CrossRef] [Green Version]
- Openov, L.A.; Podlivaev, A.I. On graphene melting. Phys. Solid State 2016, 58, 847–852. [Google Scholar] [CrossRef]
- Ganz, E.; Ganz, A.B.; Yang, L.M.; Dornfeld, M. The initial stages of melting of graphene between 4000 K and 6000 K. Phys. Chem. Chem. Phys. 2017, 19, 3756–3762. [Google Scholar] [CrossRef]
- Safina, L.R.; Baimova, J.A.; Mulyukov, R.R. Nickel nanoparticles inside carbon nanostructures: Atomistic simulation. Mech. Adv. Mater. Mod. Process. 2019, 5. [Google Scholar] [CrossRef]
- Sousa, J.D.; Aguiar, A.; Girão, E.; Fonseca, A.F.; Filho, A.S.; Galvão, D. Computational study of elastic, structural stability and dynamics properties of penta-graphene membrane. Chem. Phys. 2021, 542, 111052. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Zhu, S.E.; Ahn, J.H.; Jhon, M.S. The mechanical responses of tilted and non-tilted grain boundaries in graphene. Carbon 2012, 50, 3708–3716. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krylova, K.A.; Safina, L.R.; Murzaev, R.T.; Baimova, J.A.; Mulyukov, R.R. Effect of Nanoparticle Size on the Mechanical Strength of Ni–Graphene Composites. Materials 2021, 14, 3087. https://doi.org/10.3390/ma14113087
Krylova KA, Safina LR, Murzaev RT, Baimova JA, Mulyukov RR. Effect of Nanoparticle Size on the Mechanical Strength of Ni–Graphene Composites. Materials. 2021; 14(11):3087. https://doi.org/10.3390/ma14113087
Chicago/Turabian StyleKrylova, Karina A., Liliya R. Safina, Ramil T. Murzaev, Julia A. Baimova, and Radik R. Mulyukov. 2021. "Effect of Nanoparticle Size on the Mechanical Strength of Ni–Graphene Composites" Materials 14, no. 11: 3087. https://doi.org/10.3390/ma14113087
APA StyleKrylova, K. A., Safina, L. R., Murzaev, R. T., Baimova, J. A., & Mulyukov, R. R. (2021). Effect of Nanoparticle Size on the Mechanical Strength of Ni–Graphene Composites. Materials, 14(11), 3087. https://doi.org/10.3390/ma14113087