The Influence of Popular Beverages on Mechanical Properties of Composite Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Materials
2.2. Vickers Microhardness Test
2.3. Flexural Strength Test
2.4. Statistical Methods
- Composite material;
- Conditioning environment;
- Interaction of both factors.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jongsma, L.A.; Kleverlaan, C.J.; Feilzer, A.J. Clinical Success and Survival of Indirect Resin Composite Crowns: Results of a 3-Year Prospective Study. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2012, 28, 952–960. [Google Scholar] [CrossRef]
- Kassem, A.S.; Atta, O.; El-Mowafy, O. Fatigue Resistance and Microleakage of CAD/CAM Ceramic and Composite Molar Crowns. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2012, 21, 28–32. [Google Scholar] [CrossRef]
- Shaw, L.; Smith, A.J. Dental Erosion—The Problem and Some Practical Solutions. Br. Dent. J. 1999, 186, 115–118. [Google Scholar]
- Armstrong, L.E.; Johnson, E.C. Water Intake, Water Balance, and the Elusive Daily Water Requirement. Nutrients 2018, 10, 1928. [Google Scholar] [CrossRef] [Green Version]
- Yip, H.H.Y.; Wong, R.W.K.; Hägg, U. Complications of Orthodontic Treatment: Are Soft Drinks a Risk Factor? World J. Orthod. 2009, 10, 33–40. [Google Scholar]
- Lee, J.G.; Messer, L.B. Intake of Sweet Drinks and Sweet Treats versus Reported and Observed Caries Experience. Eur. Arch. Paediatr. Dent. Off. J. Eur. Acad. Paediatr. Dent. 2010, 11, 5–17. [Google Scholar] [CrossRef]
- Hannig, C.; Hamkens, A.; Becker, K.; Attin, R.; Attin, T. Erosive Effects of Different Acids on Bovine Enamel: Release of Calcium and Phosphate in Vitro. Arch. Oral Biol. 2005, 50, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.S.; Kato, M.T.; Buzalaf, M.A.R. Effect of Supplementation of Soft Drinks with Green Tea Extract on Their Erosive Potential against Dentine. Aust. Dent. J. 2011, 56, 317–321. [Google Scholar] [CrossRef]
- Tahmassebi, J.F.; Duggal, M.S.; Malik-Kotru, G.; Curzon, M.E.J. Soft Drinks and Dental Health: A Review of the Current Literature. J. Dent. 2006, 34, 2–11. [Google Scholar] [CrossRef]
- Polski Komitet Normalizacyjny. Stomatologia—Materiały Polimerowe do Odbudowy PN-EN ISO 4049; Polski Komitet Normalizacyjny: Warszawa, Poland, 2010; ISBN 978-83-266-2107-9. [Google Scholar]
- Gawriołek, M.; Sikorska, E.; Ferreira, L.F.V.; Costa, A.I.; Khmelinskii, I.; Krawczyk, A.; Sikorski, M.; Koczorowski, R. Color and Luminescence Stability of Selected Dental Materials In Vitro: Color and Luminescence Stability. J. Prosthodont. 2012, 21, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Fastier-Wooller, J.; Phan, H.-P.; Dinh, T.; Nguyen, T.-K.; Cameron, A.; Öchsner, A.; Dao, D.V. Novel Low-Cost Sensor for Human Bite Force Measurement. Sensors 2016, 16, 1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waltimo, A.; Kemppainen, P.; Könönen, M. Maximal Contraction Force and Endurance of Human Jaw-Closing Muscles in Isometric Clenching. Scand. J. Dent. Res. 1993, 101, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Yanikoğlu, N.; Duymuş, Z.Y.; Yilmaz, B. Effects of Different Solutions on the Surface Hardness of Composite Resin Materials. Dent. Mater. J. 2009, 28, 344–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.; Chung, S.H.; Lee, J.T.; Kim, Y.T.; Kim, Y.J.; Oh, S.; Yeo, I.L. Influence of Acid, Ethanol, and Anthocyanin Pigment on the Optical and Mechanical Properties of a Nanohybrid Dental Composite Resin. Materials 2018, 18, 1234. [Google Scholar] [CrossRef] [Green Version]
- Tanthanuch, S.; Kukiattrakoon, B.; Siriporananon, C.; Ornprasert, N.; Mettasitthikorn, W.; Likhitpreeda, S.; Waewsanga, S. The effect of different beverages on surface hardness of nanohybrid resin composite and giomer. J. Conserv. Dent. 2014, 17, 261–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliping-McKenzie, M.; Linden, R.W.A.; Nicholson, J.W. The Effect of Coca-Cola and Fruit Juices on the Surface Hardness of Glass-Ionomers and “Compomers”. J. Oral Rehabil. 2004, 31, 1046–1052. [Google Scholar] [CrossRef]
- Da Silva, M.A.; Vitti, R.P.; Sinhoreti, M.A.; Consani, R.L.; Silva-Júnior, J.G.; Tonholo, J. Effect of alcoholic beverages on surface roughness and microhardness of dental composites. Dent. Mater. J. 2016, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Poggio, C.; Lasagna, A.; Chiesa, M.; Scribante, A. Vickers Micro-Hardness of New Restorative CAD/CAM Dental Materials: Evaluation and Comparison after Exposure to Acidic Drink. Materials 2019, 12, 1246. [Google Scholar] [CrossRef] [Green Version]
- Awliya, W.Y.; Al-Alwani, D.J.; Gashmer, E.S.; Al-Mandil, H.B. The Effect of Commonly Used Types of Coffee on Surface Microhardness and Color Stability of Resin-Based Composite Restorations. Saudi. Dent. J. 2010, 22, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Babu, K.M. Caffeine reduces myocardial blood flow during exercise. Am. J. Med. 2013, 126, e1–e8. [Google Scholar] [CrossRef]
- Nowak, D.; Jasionowski, A. Analysis of the Consumption of Caffeinated Energy Drinks among Polish Adolescents. Int. J. Environ. Res. Public Health 2015, 10, 7910–7921. [Google Scholar] [CrossRef] [Green Version]
- Erdemir, U.; Yildiz, E.; Eren, M.M.; Ozel, S. Surface Hardness of Different Restorative Materials after Long-Term Immersion in Sports and Energy Drinks. Dent. Mater. J. 2012, 31, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Erdemir, U.; Yildiz, E.; Eren, M.M.; Ozel, S. Surface Hardness Evaluation of Different Composite Resin Materials: Influence of Sports and Energy Drinks Immersion after a Short-Term Period. J. Appl. Oral Sci. Rev. FOB 2013, 21, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdemir, U.; Yildiz, E.; Eren, M.M. Effects of Sports Drinks on Color Stability of Nanofilled and Microhybrid Composites after Long-Term Immersion. J. Dent. 2012, 40 (Suppl. 2), e55–e63. [Google Scholar] [CrossRef]
- Janda, R.; Roulet, J.-F.; Latta, M. The Effects of Thermocycling on the Flexural Strength and Flexural Modulus of Modern Resin-Based Filling Materials. Dent. Mater. 2006, 22, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Egli, R.; Roos, M.; Özcan, M.; Hämmerle, C.H. The Impact of in Vitro Aging on the Mechanical and Optical Properties of Indirect Veneering Composite Resins. J. Prosthet. Dent. 2011, 106, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, C.; Ilie, N. The Mechanical Stability of Nano-Hybrid Composites with New Methacrylate Monomers for Matrix Compositions. Dent. Mater. 2012, 28, 152–159. [Google Scholar] [CrossRef]
- Fonseca, A.S.Q.D.S.; Gerhardt, K.M.D.F.; Pereira, G.D.D.S.; Sinhoreti, M.A.C.; Schneider, L.F.J. Do New Matrix Formulations Improve Resin Composite Resistance to Degradation Processes? Braz. Oral Res. 2013, 27, 410–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yesilyurt, C.; Yoldas, O.; Altintas, S.H.; Kusgoz, A. Effects of Food-Simulating Liquids on the Mechanical Properties of a Silorane-Based Dental Composite. Dent. Mater. J. 2009, 28, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed. Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef]
- Scribante, A.; Gallo, S.; Scarantino, S.; Dagna, A.; Poggio, C.; Colombo, M. Exposure of Biomimetic Composite Materials to Acidic Challenges: Influence on Flexural Resistance and Elastic Modulus. Biomimetics 2020, 28, 56. [Google Scholar] [CrossRef]
- Jyothi, K.; Crasta, S.; Venugopal, P. Effect of Five Commercial Mouth Rinses on the Microhardness of a Nanofilled Resin Composite Restorative Material: An in Vitro Study. J. Conserv. Dent. JCD 2012, 15, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Vouvoudi, E.C.; Sideridou, I.D. Dynamic Mechanical Properties of Dental Nanofilled Light-Cured Resin Composites: Effect of Food-Simulating Liquids. J. Mech. Behav. Biomed. Mater. 2012, 10, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Correr, G.M.; Bruschi Alonso, R.C.; Baratto-Filho, F.; Correr-Sobrinho, L.; Sinhoreti, M.A.C.; Puppin-Rontani, R.M. In Vitro Long-Term Degradation of Aesthetic Restorative Materials in Food-Simulating Media. Acta Odontol. Scand. 2012, 70, 101–108. [Google Scholar] [CrossRef]
- Rahim, T.N.A.T.; Mohamad, D.; Md Akil, H.; Ab Rahman, I. Water Sorption Characteristics of Restorative Dental Composites Immersed in Acidic Drinks. Dent. Mater. 2012, 28, e63–e70. [Google Scholar] [CrossRef]
Name | Company | Filler Type | Filler Size | % of Total Weight |
---|---|---|---|---|
Gradia Direct Anterior | GC E, Belgium | Micro-hybrid | Silica—0.85 µm | 73% |
G-aenial | GC EUROPE, Belgium | Nano-hybrid | Silica/strontium glass, lanthanum fluoride 16–17 µm, silica > 100 nm, colloidal silica < 100 nm | 89% |
Kalore | GC EUROPE, Belgium | Nano-hybrid | Prepolymerized filler 17 µm strontium glass, lanthanum fluoride > 100 nm, colloidal silica < 100 nm | 82% |
Boston | Arkona, Poland | Micro-hybrid | Barium–aluminium–silicon glass, fumed silica, titanium dioxide 0.72 µm | 78% |
F2 | Arkona, Poland | Micro-hybrid | Fluorine–barium–aluminium–silica glass exerting fluorine, fumed silica, titanium dioxide 0.90 µm | 79% |
GrandioSO | VOCO GmbH, Germany | Nano-hybrid | Nanoparticles 20–40 nm, glass–porcelain material 0.05 μm | 89% |
Polofil Supra | VOCO GmbH, Germany | Micro-hybrid | Sintraglass system (microfiller 0.05 μm macrofiller 0.5–2 μm) | 76.50% |
Arabesk | VOCO GmbH, Germany | Micro-hybrid | Sintraglass system (microfiller 0.05 μm macrofiller 0.5–2 μm) | 76.50% |
Distilled Water (Control Group) | Sparkling Water | Red Bull | Coca Cola | Orange Juice | |||||
---|---|---|---|---|---|---|---|---|---|
pH | Temp (°C) | pH | Temp (°C) | pH | Temp (°C) | pH | Temp (°C) | pH | Temp (°C) |
5.83 | 21.7 | 5.41 | 22.2 | 3.41 | 22.3 | 2.42 | 21.3 | 3.86 | 21.4 |
5.82 | 21.9 | 5.45 | 22.2 | 3.42 | 22.5 | 2.42 | 21.3 | 3.87 | 21.5 |
5.83 | 22 | 5.45 | 22.4 | 3.41 | 22.3 | 2.42 | 21.7 | 3.86 | 21.5 |
Composite Material | Distilled Water (Control Group) | Sparkling Water | Coca-Cola | Red Bull | Orange Juice | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | |
Gradia Direct Anterior | 26.60 | 0.55 | 21.54 * | 0.26 | 17.09 * | 0.25 | 16.17 * | 0.22 | 16.37 * | 0.27 |
G-aenial | 30.25 | 0.39 | 24.22 * | 0.20 | 22.03 * | 0.25 | 22.64 * | 0.23 | 20.88 * | 0.20 |
Kalore | 37.80 | 0.60 | 33.27 * | 0.52 | 28.18 * | 0.28 | 32.48 * | 0.34 | 23.95 * | 0.26 |
Boston | 45.11 | 0.52 | 39.85 * | 0.41 | 29.77 * | 0.34 | 36.34 * | 0.45 | 36.33 * | 0.37 |
F2 | 46.22 | 0.37 | 45.35 | 0.45 | 39.26 * | 0.40 | 39.18 * | 0.32 | 38.28 * | 0.40 |
Polofil Supra | 45.99 | 0.49 | 39.69 * | 0.37 | 37.68 * | 0.33 | 39.07 * | 0.34 | 36.70 * | 0.34 |
GrandioSO | 61.73 | 0.69 | 54.53 * | 0.58 | 51.92 * | 0.62 | 56.58 * | 0.54 | 47.33 * | 0.43 |
Arabesk | 39.99 | 0.39 | 36.79 * | 0.36 | 36.07 * | 0.34 | 37.30 * | 0.33 | 35.45 * | 0.32 |
Composite Material | Distilled Water (Control Group) | Sparkling Water | Coca-Cola | Red Bull | Orange Juice | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Gradia Direct Anterior | 89.35 | 7.91 | 87.69 | 12.2 | 76.51 * | 7.21 | 83.48 | 5.36 | 77.64 * | 8.39 |
G-aenial | 98.44 | 6.42 | 94.70 | 6.57 | 89.24 | 10.96 | 98.40 | 10.71 | 94.55 | 10.93 |
Kalore | 95.71 | 19.7 | 94.26 | 14.8 | 88.47 | 8.76 | 90.00 | 12.63 | 93.27 | 11.91 |
Boston | 127.95 | 16.51 | 128.30 | 11.98 | 117.32 | 22.29 | 127.58 | 17.98 | 127.61 | 23.67 |
F2 | 131.23 | 28.04 | 130.20 | 20.45 | 122.71 | 26.04 | 117.05 | 19.08 | 122.60 | 13.38 |
Polofil Supra | 139.90 | 19.38 | 128.47 | 22.14 | 113.52 | 27.67 | 134.10 | 22.72 | 124.65 | 29.84 |
GrandioSO | 136.58 | 34.65 | 133.66 | 29.15 | 126.60 | 27.82 | 131.17 | 27.87 | 133.31 | 31.34 |
Arabesk | 132.06 | 19.59 | 117.74 | 22.49 | 105.96 | 28.18 | 117.75 | 27.78 | 110.95 | 25.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szalewski, L.; Wójcik, D.; Bogucki, M.; Szkutnik, J.; Różyło-Kalinowska, I. The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials 2021, 14, 3097. https://doi.org/10.3390/ma14113097
Szalewski L, Wójcik D, Bogucki M, Szkutnik J, Różyło-Kalinowska I. The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials. 2021; 14(11):3097. https://doi.org/10.3390/ma14113097
Chicago/Turabian StyleSzalewski, Leszek, Dorota Wójcik, Marcin Bogucki, Jacek Szkutnik, and Ingrid Różyło-Kalinowska. 2021. "The Influence of Popular Beverages on Mechanical Properties of Composite Resins" Materials 14, no. 11: 3097. https://doi.org/10.3390/ma14113097
APA StyleSzalewski, L., Wójcik, D., Bogucki, M., Szkutnik, J., & Różyło-Kalinowska, I. (2021). The Influence of Popular Beverages on Mechanical Properties of Composite Resins. Materials, 14(11), 3097. https://doi.org/10.3390/ma14113097