Predicting Mechanical Properties of High-Performance Fiber-Reinforced Cementitious Composites by Integrating Micromechanics and Machine Learning
Abstract
:1. Introduction
2. Methodology
2.1. Machine Learning Models
2.2. Dataset
2.2.1. Overview
2.2.2. Dataset Augmentation
2.2.3. Dataset Cleaning
2.2.4. Dataset Normalization
2.2.5. Multicollinearity and Principal Component Analysis
2.3. Hyperparameter Tuning
2.4. Performance Evaluation
2.5. Innovation of the Proposed Methodology
3. Results and Discussions
3.1. Anomalous Data
3.2. Variable Selection
3.3. Hyperparameter Tunning
3.4. Training Process
3.5. Prediction Results of Mechanical Properties
3.6. Effect of Supplemental Data
3.7. Implementation of the Predictive Models
4. Conclusions
- The proposed methods provide reasonable prediction accuracy for the tensile strain capacity (or ductility), as well as the compressive and tensile strengths of HPFRCC. Among the investigated machine learning methods, the XGBoost method shows the highest prediction accuracy for all the investigated mechanical properties. With the training dataset, R2 of the compressive strength, tensile strength, and ductility reached 0.984, 0.993, and 0.989, respectively. With the testing dataset, R2 of the compressive strength, tensile strength, and ductility reached 0.921, 0.957, and 0.896, respectively.
- The prediction accuracy for the tensile strain capacity can be further improved by using the supplemental data generated from the micromechanics model. With the addition of only 70 more data, the R2 values of the tensile strain capacity is increased from 0.896 to 0.912 for the training results.
- The predictive models are implemented to predict the mechanical properties of HPFRCC. The comparison of the prediction and test results further proves the prediction accuracy of the developed models. The implementation also demonstrates possible use cases of the predictive models for replacing or supplementing the experimental tests in the development and optimization of HPFRCC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Li, V.C. Polyvinyl alcohol fiber reinforced engineered cementitious composites: Material design and performances. In Proceedings of the International Workshop on HPFRCC Structural Applications, Honolulu, HI, USA, 23–26 May 2006; Available online: http://hdl.handle.net/2027.42/84790 (accessed on 1 March 2021).
- Zhang, Z.; Qian, S.; Ma, H. Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash. Constr. Build. Mater. 2014, 52, 17–23. [Google Scholar] [CrossRef]
- Pan, Z.; Wu, C.; Liu, J.; Wang, W.; Liu, J. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr. Build. Mater. 2015, 78, 397–404. [Google Scholar] [CrossRef]
- Kim, J.-K.; Kim, J.-S.; Ha, G.J.; Kim, Y.Y. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cem. Concr. Res. 2007, 37, 1096–1105. [Google Scholar] [CrossRef]
- Meng, W.; Valipour, M.; Khayat, K.H. Optimization and performance of cost-effective ultra-high performance concrete. Mater. Struct. 2016, 50, 1–16. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K.H. Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortar. Compos. Part B Eng. 2017, 117, 26–34. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete. Cem. Concr. Res. 2017, 101, 46–54. [Google Scholar] [CrossRef]
- Meng, W.; Samaranayake, A.; Khayat, K.H. Factorial design and optimization of ultra-high-performance concrete with lightweight sand. ACI Mater. J. 2018, 115, 129–138. [Google Scholar] [CrossRef]
- Xu, M.; Bao, Y.; Wu, K.; Xia, T.; Clack, H.L.; Shi, H.; Li, V.C. Influence of TiO2 incorporation methods on NOx abatement in Engineered Cementitious Composites. Constr. Build. Mater. 2019, 221, 375–383. [Google Scholar] [CrossRef]
- Xu, M.; Clack, H.; Xia, T.; Bao, Y.; Wu, K.; Shi, H.; Li, V. Effect of TiO2 and fly ash on photocatalytic NOx abatement of engineered cementitious composites. Constr. Build. Mater. 2020, 236, 117559. [Google Scholar] [CrossRef]
- Sahmaran, M.; Yildirim, G.; Erdem, T.K. Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cem. Concr. Compos. 2013, 35, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Meng, W.; Nassif, H.; Gou, H.; Bao, Y. New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Constr. Build. Mater. 2020, 257, 119579. [Google Scholar] [CrossRef]
- Xu, M.; Bao, Y.; Wu, K.; Shi, H.; Guo, X.; Li, V.C. Multiscale investigation of tensile properties of a TiO2-doped Engineered Cementitious Composite. Constr. Build. Mater. 2019, 209, 485–491. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, M.; Dong, Z. Seismic response and shear mechanism of engineered cementitious composite (ECC) short columns. Eng. Struct. 2019, 192, 296–304. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Bao, Y.; Chen, G. Cyclic behavior of damaged reinforced concrete columns repaired with high-performance fiber-reinforced cementitious composite. Eng. Struct. 2017, 136, 26–35. [Google Scholar] [CrossRef]
- Leung, C.K.; Cheung, Y.N.; Zhang, J. Fatigue enhancement of concrete beam with ECC layer. Cem. Concr. Res. 2007, 37, 743–750. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Bao, Y.; Bu, Y. Static and fatigue push-out tests of short headed shear studs embedded in Engineered Cementitious Composites (ECC). Eng. Struct. 2019, 182, 29–38. [Google Scholar] [CrossRef]
- Li, X.; Bao, Y.; Wu, L.; Yan, Q.; Ma, H.; Chen, G.; Zhang, H. Thermal and mechanical properties of high-performance fiber-reinforced cementitious composites after exposure to high temperatures. Constr. Build. Mater. 2017, 157, 829–838. [Google Scholar] [CrossRef]
- Li, X.; Bao, Y.; Xue, N.; Chen, G. Bond strength of steel bars embedded in high-performance fiber-reinforced cementitious composite before and after exposure to elevated temperatures. Fire Saf. J. 2017, 92, 98–106. [Google Scholar] [CrossRef]
- Yang, E.-H.; Wang, S.; Yang, Y.; Li, V.C. Fiber-bridging constitutive law of engineered cementitious composites. J. Adv. Concr. Technol. 2008, 6, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Spagnoli, A.; Yang, E.-H.; Li, V.C. Micromechanical modelling of multiple fracture in engineered cementitious composites. In Proceedings of the 17th European Conference Fracture, Brno, Czech Republic, 2–5 September 2008; pp. 2407–2414. Available online: https://deepblue.lib.umich.edu/handle/2027.42/84800 (accessed on 1 March 2021).
- Guo, P.; Bao, Y.; Meng, W. Review of using glass in high-performance fiber-reinforced cementitious composites. Cem. Concr. Compos. 2021, 120, 104032. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Lu, Z.-D.; Dai, J.-G.; Shah, S.P. Direct tensile properties and stress–strain model of UHP-ECC. J. Mater. Civ. Eng. 2020, 32, 04019334. [Google Scholar] [CrossRef]
- Ghafari, E.; Bandarabadi, M.; Costa, H.; Júlio, E. Design of UHPC using artificial neural networks. Brittle Matrix Compos. 2012, 10, 61–69. [Google Scholar] [CrossRef]
- Prasad, B.R.; Eskandari, H.; Reddy, B.V. Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 2009, 23, 117–128. [Google Scholar] [CrossRef]
- Abbas, H.; Al-Salloum, Y.A.; Elsanadedy, H.M.; Almusallam, T.H. ANN models for prediction of residual strength of HSC after exposure to elevated temperature. Fire Saf. J. 2019, 106, 13–28. [Google Scholar] [CrossRef]
- Abu Yaman, M.; Elaty, M.A.; Taman, M. Predicting the ingredients of self compacting concrete using artificial neural network. Alex. Eng. J. 2017, 56, 523–532. [Google Scholar] [CrossRef]
- Akande, K.O.; Owolabi, T.O.; Twaha, S.; Olatunji, S. Performance comparison of SVM and ANN in predicting compressive strength of concrete. IOSR J. Comput. Eng. 2014, 16, 88–94. [Google Scholar] [CrossRef]
- Hammoudi, A.; Moussaceb, K.; Belebchouche, C.; Dahmoune, F. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr. Build. Mater. 2019, 209, 425–436. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Azimi-Pour, M.; Eskandari-Naddaf, H.; Pakzad, A. Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete. Constr. Build. Mater. 2020, 230, 117021. [Google Scholar] [CrossRef]
- Young, B.A.; Hall, A.; Pilon, L.; Gupta, P.; Sant, G. Can the compressive strength of concrete be estimated from knowledge of the mixture proportions? New insights from statistical analysis and machine learning methods. Cem. Concr. Res. 2019, 115, 379–388. [Google Scholar] [CrossRef]
- Yan, K.; Shi, C. Prediction of elastic modulus of normal and high strength concrete by support vector machine. Constr. Build. Mater. 2010, 24, 1479–1485. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J.; Glinicki, M.A. Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm. Constr. Build. Mater. 2015, 94, 137–147. [Google Scholar] [CrossRef]
- Demir, F. Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Constr. Build. Mater. 2008, 22, 1428–1435. [Google Scholar] [CrossRef]
- Cao, Y.F.; Wu, W.; Zhang, H.L.; Pan, J.M. Prediction of the elastic modulus of self-compacting concrete based on SVM. Appl. Mech. Mater. 2013, 357–360, 1023–1026. [Google Scholar] [CrossRef]
- Hossain, K.M.A.; Anwar, M.S.; Samani, S.G. Regression and artificial neural network models for strength properties of engineered cementitious composites. Neural Comput. Appl. 2018, 29, 631–645. [Google Scholar] [CrossRef]
- Dong, W.; Huang, Y.; Lehane, B.; Ma, G. XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Autom. Constr. 2020, 114, 103155. [Google Scholar] [CrossRef]
- Hajnayeb, A.; Ghasemloonia, A.; Khadem, S.; Moradi, M. Application and comparison of an ANN-based feature selection method and the genetic algorithm in gearbox fault diagnosis. Expert Syst. Appl. 2011, 38, 10205–10209. [Google Scholar] [CrossRef]
- Chou, J.-S.; Tsai, C.-F.; Pham, A.-D.; Lu, Y.-H. Machine learning in concrete strength simulations: Multi-nation data analytics. Constr. Build. Mater. 2014, 73, 771–780. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Deo, R.C.; Hilal, A.; Abd, A.M.; Bueno, L.C.; Salcedo-Sanz, S.; Nehdi, M.L. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Softw. 2018, 115, 112–125. [Google Scholar] [CrossRef]
- Yu, L.; Wang, S.; Lai, K.K. Forecasting foreign exchange rates using an SVR-based neural network ensemble. In Advances in Banking Technology and Management; IGI Global: Hershey, PA, USA, 2008; pp. 261–277. [Google Scholar]
- Amari, S.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999, 12, 783–789. [Google Scholar] [CrossRef]
- Gordon, L. Using classification and regression trees (CART) in SAS® enterprise miner TM for applications in public health. In Proceedings of the SAS Global Forum, San Francisco, CA, USA, 28 April–1 May 2013; Available online: https://support.sas.com/resources/papers/proceedings13/089-2013.pdf (accessed on 1 March 2021).
- Lewis, R.J. An introduction to classification and regression tree (CART) analysis. In Proceedings of the Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, San Francisco, CA, USA, 22–25 May 2000; Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.4103 (accessed on 1 March 2021).
- Behnood, A.; Golafshani, E.M. Machine learning study of the mechanical properties of concretes containing waste foundry sand. Constr. Build. Mater. 2020, 243, 118152. [Google Scholar] [CrossRef]
- Li, V.C. Engineered cementitious composites (ECC)-tailored composites through micromechanical modeling. In Fiber Reinforced Concrete: Present and the Future; Canadian Society for Civil Engineering: Montreal, QC, Canada, 1998; Available online: http://hdl.handle.net/2027.42/84667 (accessed on 1 March 2021).
- Li, V.C.; Wu, C.; Wang, S.; Ogawa, A.; Saito, T. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC). ACI Mater. J. 2002, 99, 463–472. [Google Scholar] [CrossRef]
- Ohno, M. Green and Durable Geopolymer Composites for Sustainable Civil Infrastructure. Ph.D. Thesis, University of Michigan, Ann Harbor, MI, USA, 2017. Available online: http://hdl.handle.net/2027.42/140947 (accessed on 1 March 2021).
- Yu, K.; Ding, Y.; Liu, J.; Bai, Y. Energy dissipation characteristics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC). Cem. Concr. Compos. 2020, 106, 103459. [Google Scholar] [CrossRef]
- Said, S.; Razak, H.A. The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC). Mater. Des. 2015, 86, 447–457. [Google Scholar] [CrossRef]
- Zhou, J.; Qian, S.; Beltran, M.G.S.; Ye, G.; Van Breugel, K.; Li, V.C. Development of engineered cementitious composites with limestone powder and blast furnace slag. Mater. Struct. 2009, 43, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Li, V.C. Feasibility study of lego-inspired construction with bendable concrete. Autom. Constr. 2020, 113, 103161. [Google Scholar] [CrossRef]
- Lepech, M.D.; Li, V.C.; Robertson, R.E.; Keoleian, G.A. Design of green engineered cementitious composites for improved sustainability. ACI Mater. J. 2008, 105, 567. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Xia, L. Investigation of the behaviour of flexible and ductile ECC link slab reinforced with FRP. Constr. Build. Mater. 2018, 166, 694–711. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Bao, Y.; Cong, Z. Post-fire seismic behavior of two-bay two-story frames with high-performance fiber-reinforced cementitious composite joints. Eng. Struct. 2019, 183, 150–159. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, J.-T.; Yu, K.; Xu, S.-L. Basic mechanical properties of ultra-high ductility cementitious composites: From 40 MPa to 120 MPa. Compos. Struct. 2018, 185, 634–645. [Google Scholar] [CrossRef]
- Lin, J.-X.; Song, Y.; Xie, Z.-H.; Guo, Y.-C.; Yuan, B.; Zeng, J.-J.; Wei, X. Static and dynamic mechanical behavior of engineered cementitious composites with PP and PVA fibers. J. Build. Eng. 2020, 29, 101097. [Google Scholar] [CrossRef]
- Ding, Y.; Yu, K.; Yu, J.-T.; Xu, S.-L. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study. Constr. Build. Mater. 2018, 177, 102–115. [Google Scholar] [CrossRef]
- Yu, K.; Wang, Y.; Yu, J.; Xu, S. A strain-hardening cementitious composites with the tensile capacity up to 8%. Constr. Build. Mater. 2017, 137, 410–419. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Yu, J.; Dong, F.; Ye, J. Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites. Constr. Build. Mater. 2020, 251, 118917. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Dai, J.-G.; Lu, Z.-D.; Poon, C.-S. Rate-dependent tensile properties of ultra-high performance engineered cementitious composites (UHP-ECC). Cem. Concr. Compos. 2018, 93, 218–234. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Y.; Yao, Y. Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Constr. Build. Mater. 2012, 36, 1076–1081. [Google Scholar] [CrossRef]
- Turk, K.; Nehdi, M.L. Coupled effects of limestone powder and high-volume fly ash on mechanical properties of ECC. Constr. Build. Mater. 2018, 164, 185–192. [Google Scholar] [CrossRef]
- Zhou, Y.; Xi, B.; Sui, L.; Zheng, S.; Xing, F.; Li, L. Development of high strain-hardening lightweight engineered cementitious composites: Design and performance. Cem. Concr. Compos. 2019, 104, 103370. [Google Scholar] [CrossRef]
- Yu, K.; Zhu, W.; Ding, Y.; Lu, Z.-D.; Yu, J.-T.; Xiao, J.-Z. Micro-structural and mechanical properties of ultra-high performance engineered cementitious composites (UHP-ECC) incorporation of recycled fine powder (RFP). Cem. Concr. Res. 2019, 124, 105813. [Google Scholar] [CrossRef]
- Li, Z.; Yue, J.; Hu, L.; Li, D.; Fu, Z. Weighted least square fitting based abnormal aquaculture water quality perception data elimination. Sens. Lett. 2012, 10, 529–534. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer: Berlin, Germany, 2012. [Google Scholar]
- Friedrich, R.J. In defense of multiplicative terms in multiple regression equations. Am. J. Political Sci. 1982, 26, 797. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5, Available online: https://www.pearsonhighered.com/assets/preface/0/1/3/4/0134790545.pdf (accessed on 1 March 2021).
- Sulaiman, M.S.; Abood, M.M.; Sinnakaudan, S.K.; Shukor, M.R.; You, G.Q.; Chung, X.Z. Assessing and solving multicollinearity in sediment transport prediction models using principal component analysis. ISH J. Hydraul. Eng. 2019, 1–11. [Google Scholar] [CrossRef]
- PCA Whitening. Standford Website. Available online: http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/ (accessed on 1 March 2021).
- Bao, Y.; Liu, Z. A fast grid search method in support vector regression forecasting time series. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Yangzhou, China, 12–14 October 2006; Volume 4224, pp. 504–511. [Google Scholar]
- Pham, B.T.; Son, L.H.; Hoang, T.-A.; Nguyen, D.-M.; Bui, D.T. Prediction of shear strength of soft soil using machine learning methods. Catena 2018, 166, 181–191. [Google Scholar] [CrossRef]
- Boddy, R.; Smith, G. Statistical Methods in Practice; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Zhang, D. A coefficient of determination for generalized linear models. Am. Stat. 2017, 71, 310–316. [Google Scholar] [CrossRef]
- Ismail, M.K.; Hassan, A.A.A.; Lachemi, M. Performance of self-consolidating engineered cementitious composite under drop-weight impact loading. J. Mater. Civ. Eng. 2019, 31, 04018400. [Google Scholar] [CrossRef]
Number | Variable | Range | Unit | Mean | Standard Deviation |
---|---|---|---|---|---|
1 | Cement-to-binder ratio | 0.152–1 | 1 | 0.463 | 0.212 |
2 | Fly ash-to-binder ratio | 0–0.848 | 1 | 0.362 | 0.306 |
3 | Slag-to-binder ratio | 0–0.808 | 1 | 0.12 | 0.211 |
4 | Rice husk-to-binder ratio | 0–0.360 | 1 | 0.004 | 0.028 |
5 | Limestone-to-binder ratio | 0–0.577 | 1 | 0.022 | 0.080 |
6 | Metakaolin-to-binder ratio | 0–0.094 | 1 | 0.001 | 0.008 |
7 | Silica fume-to-binder ratio | 0–0.206 | 1 | 0.014 | 0.035 |
8 | Sand-to-binder ratio | 0–1.40 | 1 | 0.41 | 0.19 |
9 | Water-to-binder ratio | 0.11–0.80 | 1 | 0.27 | 0.08 |
10 | Superplasticizer content | 0–2.7 | % | 0.78 | 0.59 |
11 | Fiber volume | 0–3.0 | % | 1.9 | 0.5 |
12 | Fiber length | 6–27 | mm | 11.5 | 3.6 |
13 | Fiber diameter | 12–39 | μm | 34.2 | 8.3 |
14 | Fiber elastic modulus | 4–200 | GPa | 56.1 | 34.6 |
Items | Number of Anomalous Data |
---|---|
Sand-to-binder ratio | 7 |
Water-to-binder ratio | 6 |
Superplasticizer content | 6 |
Fiber length | 2 |
Fiber elastic modulus | 2 |
Method | Hyperparameter | Range | Optimal Values for Different Properties | ||
---|---|---|---|---|---|
Compressive Strength | Tensile Strength | Tensile Strain Capacity | |||
ANN | Hidden layer size | 15–100 | 90 | 40 | 41 |
Learning rate | 0.0001–1.0 | 0.001 | 0.001 | 0.001 | |
SVR | C | 1–40 | 37 | 12 | 6 |
Gamma | 0.1–1.0 | 0.6 | 0.2 | 0.1 | |
Epsilon | 0.1–1.0 | 0.1 | 0.2 | 0.2 | |
CART | Maximum depth | 2–10 | 4 | 4 | 4 |
Maximum leaf nodes | 2–10 | 8 | 9 | 7 | |
Minimum samples leaf | 2–10 | 2 | 3 | 9 | |
Minimum samples split | 2–10 | 6 | 9 | 2 | |
XGBoost | Learning rate | 0.001–1.0 | 0.1 | 0.1 | 0.1 |
Estimator number | 20–3000 | 1000 | 100 | 1877 | |
Gamma | 0–10 | 0.667 | 0.333 | 0 | |
Maximum depth | 1–10 | 2 | 5 | 8 | |
Column sample by tree | 0–10 | 1 | 1.0 | 1.0 | |
Subsample ratio | 0–1.0 | 0.3 | 0.3 | 0.3 | |
Lambda | 0–100 | 33.3 | 11.1 | 16.7 | |
Alpha | 0–10 | 2.2 | 2.0 | 2.0 |
Compressive Strength | Tensile Strength | Tensile Strain Capacity |
---|---|---|
Model | Set | Evaluation | Compressive Strength | Tensile Strength | Tensile Strain Capacity |
---|---|---|---|---|---|
ANN | R2 | 0.871 | 0.856 | 0.803 | |
Training | R | 0.933 | 0.925 | 0.882 | |
MSE | 59.006 | 2.282 | 0.913 | ||
Testing | R2 | 0.811 | 0.827 | 0.754 | |
R | 0.916 | 0.911 | 0.876 | ||
MSE | 69.513 | 2.498 | 0.925 | ||
SVR | Training | R2 | 0.947 | 0.957 | 0.962 |
R | 0.973 | 0.979 | 0.981 | ||
MSE | 24.140 | 0.631 | 0.765 | ||
Testing | R2 | 0.904 | 0.940 | 0.871 | |
R | 0.952 | 0.978 | 0.944 | ||
MSE | 35.228 | 0.663 | 0.962 | ||
CART | Training | R2 | 0.882 | 0.913 | 0.752 |
R | 0.928 | 0.958 | 0.868 | ||
MSE | 52.823 | 1.299 | 1.723 | ||
Testing | R2 | 0.854 | 0.772 | 0.703 | |
R | 0.733 | 0.880 | 0.836 | ||
MSE | 100.754 | 3.258 | 1.886 | ||
XGBoost | Training | R2 | 0.984 | 0.993 | 0.989 |
R | 0.992 | 0.996 | 0.996 | ||
MSE | 6.268 | 0.130 | 0.063 | ||
Testing | R2 | 0.921 | 0.957 | 0.896 | |
R | 0.966 | 0.980 | 0.955 | ||
MSE | 45.570 | 0.602 | 0.617 |
Model | Datasets | Evaluation | Tensile Strain Capacity | |
---|---|---|---|---|
Dataset 1 | Dataset 2 | |||
ANN | Training | R2 | 0.803 | 0.958 |
R | 0.882 | 0.994 | ||
MSE | 0.913 | 0.102 | ||
Testing | R2 | 0.754 | 0.868 | |
R | 0.876 | 0.948 | ||
MSE | 0.925 | 0.673 | ||
SVR | Training | R2 | 0.962 | 0.971 |
R | 0.981 | 0.986 | ||
MSE | 0.765 | 0.234 | ||
Testing | R2 | 0.871 | 0.907 | |
R | 0.944 | 0.954 | ||
MSE | 0.962 | 0.608 | ||
CART | Training | R2 | 0.752 | 0.833 |
R | 0.868 | 0.972 | ||
MSE | 1.723 | 0.450 | ||
Testing | R2 | 0.703 | 0.817 | |
R | 0.836 | 0.910 | ||
MSE | 1.886 | 1.190 | ||
XGBoost | Training | R2 | 0.989 | 0.987 |
R | 0.996 | 0.994 | ||
MSE | 0.063 | 0.102 | ||
Testing | R2 | 0.896 | 0.912 | |
R | 0.955 | 0.968 | ||
MSE | 0.617 | 0.673 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Meng, W.; Xu, M.; Li, V.C.; Bao, Y. Predicting Mechanical Properties of High-Performance Fiber-Reinforced Cementitious Composites by Integrating Micromechanics and Machine Learning. Materials 2021, 14, 3143. https://doi.org/10.3390/ma14123143
Guo P, Meng W, Xu M, Li VC, Bao Y. Predicting Mechanical Properties of High-Performance Fiber-Reinforced Cementitious Composites by Integrating Micromechanics and Machine Learning. Materials. 2021; 14(12):3143. https://doi.org/10.3390/ma14123143
Chicago/Turabian StyleGuo, Pengwei, Weina Meng, Mingfeng Xu, Victor C. Li, and Yi Bao. 2021. "Predicting Mechanical Properties of High-Performance Fiber-Reinforced Cementitious Composites by Integrating Micromechanics and Machine Learning" Materials 14, no. 12: 3143. https://doi.org/10.3390/ma14123143
APA StyleGuo, P., Meng, W., Xu, M., Li, V. C., & Bao, Y. (2021). Predicting Mechanical Properties of High-Performance Fiber-Reinforced Cementitious Composites by Integrating Micromechanics and Machine Learning. Materials, 14(12), 3143. https://doi.org/10.3390/ma14123143