Influence of the Precursor, Molarity and Temperature on the Rheology and Structural Buildup of Alkali-Activated Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Details
2.2. Rheological Measurements
3. Results
3.1. Flow Curves
3.2. Viscosity Curves
3.3. Linear Viscoelastic Range
3.4. Storage Modulus
3.4.1. Effect of Precursor
3.4.2. Effect of Molarity
3.4.3. Effect of Temperature
3.5. Loss Factor
4. Conclusions
- At 25 °C, the alkali-activated fly ash showed lower shear stress than the alkali-activated slag and blended mixes. The flocculation of slag particles and the increased interparticle forces resulted in shear stress of the slag and blended alkali-activated mixes. Moreover, the higher molarity of the mixes increases the repulsive forces between the precursor particles, leading to higher shear stress. The flow curve measurements showed that workability of alkali-activated materials was highly interdependent on multiple factors, such as precursor, molarity, etc.
- As compared to alkali-activated fly ash, an increase in the viscosity of the alkali-activated slag was observed due to the higher dissolution of the precursor and the precipitation of the reaction products. Regarding the higher molarity of the alkali-activating solution, the effect of sodium silicate is diluted, which results in increased viscosity of the alkali-activated mixes. Furthermore, the viscosity measurements showed that particle size distribution also played an important role in higher viscosity values of alkali-activated slag.
- The gain and degree of the storage modulus of the slag mixes were rapid when compared to those of the alkali-activated fly ash, which showed very poor structural buildup. The low dissolution of the fly ash was improved when the slag amount was increased in the mix. The storage modulus values provided critical insight in understanding how a precursor can affect the structural buildup of alkali-activated material.
- The alkali-activated mixes with higher molarity of the alkali-activating solution registered a higher initial storage modulus due to a complex flocculated network. Higher molarity was instrumental in the rapid structural buildup due to the enhanced dissolution of the precursors and the precipitation of the reaction products. The measurement of storage modulus also showed that higher molarity resulted in higher nucleation sites.
- An increase in the storage modulus was observed with a rise in the temperature. For the alkali-activated fly ash, a temperature above 35 °C enhanced the dissolution of fly ash particles and the precipitation of the reaction products. It can be stated that spark point of polymerization can be effectively suggested by using the isothermal rheology.
- The loss factor was gradually reduced in the alkali-activated slag and blended mixes due to gelation and less viscous deformation. The alkali-activated fly ash showed small peaks and humps in the loss factor, which indicated a higher loss modulus over the storage modulus. The higher molarity and temperature of the alkali-activated mix showed a rapid reduction in the loss factor values due to the greater amounts of reaction products, which indicated a viscoelastic solid phase. The loss factor measurement was quite instrumental in understanding the steady gel formation of alkali-activated materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elahi, M.M.A.; Hossain, M.M.; Karim, M.R.; Zain, M.F.M.; Shearer, C. A review on alkali-activated binders: Materials composition and fresh properties of concrete. Constr. Build. Mater. 2020, 260, 119788. [Google Scholar] [CrossRef]
- Wang, A.; Zheng, Y.; Zhang, Z.; Liu, K.; Li, Y.; Shi, L.; Sun, D. The Durability of Alkali-Activated Materials in Comparison with Ordinary Portland Cements and Concretes: A Review. Engineering 2020, 6, 695–706. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Hu, Y.; Zhou, J.L.; Tam, V.W.Y. Review on designs and properties of multifunctional alkali-activated materials (AAMs). Constr. Build. Mater. 2019, 200, 474–489. [Google Scholar] [CrossRef]
- Jang, J.G.; Lee, H.K. Effect of fly ash characteristics on delayed high-strength development of geopolymers. Constr. Build. Mater. 2016, 102, 260–269. [Google Scholar] [CrossRef]
- Jang, J.G.; Lee, N.K.; Lee, H.K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 2014, 50, 169–176. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- Hojati, M.; Radlińska, A. Shrinkage and strength development of alkali-activated fly ash-slag binary cements. Constr. Build. Mater. 2017, 150, 808–816. [Google Scholar] [CrossRef]
- Aydın, S.; Baradan, B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos. Part B Eng. 2014, 57, 166–172. [Google Scholar] [CrossRef]
- Lee, N.K.; Jang, J.G.; Lee, H.K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 2014, 53, 239–248. [Google Scholar] [CrossRef]
- Puertas, F.; Fernández-Jiménez, A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Compos. 2003, 25, 287–292. [Google Scholar] [CrossRef]
- Provis, J.L.; Palomo, A.; Shi, C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015, 78, 110–125. [Google Scholar] [CrossRef]
- Favier, A.; Habert, G.; Roussel, N.; de Lacaillerie, J.-B.D. A multinuclear static NMR study of geopolymerisation. Cem. Concr. Res. 2015, 75, 104–109. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Wang, J.; Du, P.; Zhou, Z.; Xu, D.; Xie, N.; Cheng, X. Effect of nano-silica on hydration, microstructure of alkali-activated slag. Constr. Build. Mater. 2019, 220, 110–118. [Google Scholar] [CrossRef]
- Palacios, M.; Banfill, P.F.; Puertas, F.; Francisca, P. Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture. ACI Mater. J. 2008, 105, 140. [Google Scholar]
- Poulesquen, A.; Frizon, F.; Lambertin, D. Rheological behavior of alkali-activated metakaolin during geopolymerization. J. Non-Cryst. Solids 2011, 357, 3565–3571. [Google Scholar] [CrossRef]
- Rifaai, Y.; Yahia, A.; Mostafa, A.; Aggoun, S.; Kadri, E.-H. Rheology of fly ash-based geopolymer: Effect of NaOH concentration. Constr. Build. Mater. 2019, 223, 583–594. [Google Scholar] [CrossRef]
- Ishwarya, G.; Singh, B.; Deshwal, S.; Bhattacharyya, S.K. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes. Cem. Concr. Compos. 2019, 97, 226–238. [Google Scholar]
- Dai, X.; Aydin, S.; Yardimci, M.Y.; Lesage, K.; de Schutter, G. Influence of water to binder ratio on the rheology and structural Build-up of Alkali-Activated Slag/Fly ash mixtures. Constr. Build. Mater. 2020, 264, 120253. [Google Scholar] [CrossRef]
- Palacios, M.; Alonso, M.M.; Varga, C.; Puertas, F. Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cem. Concr. Compos. 2019, 95, 277–284. [Google Scholar] [CrossRef]
- Vance, K.; Dakhane, A.; Sant, G.; Neithalath, N. Observations on the rheological response of alkali activated fly ash suspensions: The role of activator type and concentration. Rheol. Acta 2014, 53, 843–855. [Google Scholar] [CrossRef]
- Mezger, T. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers; European Coatings: Hanover, Germany, 2020. [Google Scholar]
- Subramaniam, K.V.; Wang, X. An investigation of microstructure evolution in cement paste through setting using ultrasonic and rheological measurements. Cem. Concr. Res. 2010, 40, 33–44. [Google Scholar] [CrossRef]
- Yuan, Q.; Lu, X.; Khayat, K.H.; Feys, D.; Shi, C. Small amplitude oscillatory shear technique to evaluate structural build-up of cement paste. Mater. Struct. 2016, 50, 112. [Google Scholar] [CrossRef]
- Saasen, A.; Marken, C.; Dawson, J.; Rogers, M. Oscillating rheometer measurements on oilfield cement slurries. Cem. Concr. Res. 1991, 21, 109–119. [Google Scholar] [CrossRef]
- Conte, T.; Chaouche, M. Parallel superposition rheology of cement pastes. Cem. Concr. Compos. 2019, 104, 103393. [Google Scholar] [CrossRef]
- Varshney, A.; Gohil, S.; Chalke, B.A.; Bapat, R.D.; Mazumder, S.; Bhattacharya, S.; Ghosh, S. Rheology of hydrating cement paste: Crossover between two aging processes. Cem. Concr. Res. 2017, 95, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Ramos, G.A.; de Matos, P.R.; Pelisser, F.; Gleize, P.J.P. Effect of porcelain tile polishing residue on eco-efficient geopolymer: Rheological performance of pastes and mortars. J. Build. Eng. 2020, 32, 101699. [Google Scholar] [CrossRef]
- Souza, M.T.; Simão, L.; de Moraes, E.G.; Senff, L.; Pessôa, J.R.d.; Ribeiro, M.J.; de Oliveira, A.P.N. Role of temperature in 3D printed geopolymers: Evaluating rheology and buildability. Mater. Lett. 2021, 293, 129680. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. J. Clean. Prod. 2020, 270, 122389. [Google Scholar] [CrossRef]
- Flatt, R.J.; Bowen, P. Yodel: A Yield Stress Model for Suspensions. J. Am. Ceram. Soc. 2006, 89, 1244–1256. [Google Scholar] [CrossRef]
- Lowke, D. Interparticle Forces and Rheology of Cement Based Suspensions, Nanotechnology in Construction 3; Springer: Berlin/Heidelberg, Germany, 2009; pp. 295–301. [Google Scholar]
- Zhu, X.; Zhang, M.; Yang, K.; Yu, L.; Yang, C. Setting behaviours and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China. Cem. Concr. Compos. 2020, 114, 103782. [Google Scholar] [CrossRef]
- Michlmayr, G.; Or, D. Mechanisms for acoustic emissions generation during granular shearing. Granul. Matter 2014, 16, 627–640. [Google Scholar] [CrossRef]
- Dzaye, E.D.; de Schutter, G.; Aggelis, D.G. Monitoring early-age acoustic emission of cement paste and fly ash paste. Cem. Concr. Res. 2020, 129, 105964. [Google Scholar] [CrossRef] [Green Version]
- Konijn, B.J.; Sanderink, O.B.J.; Kruyt, N.P. Experimental study of the viscosity of suspensions: Effect of solid fraction, particle size and suspending liquid. Powder Technol. 2014, 266, 61–69. [Google Scholar] [CrossRef]
- Landrou, G.; Brumaud, C.; Winnefeld, F.; Flatt, R.J.; Habert, G. Lime as an Anti-Plasticizer for Self-Compacting Clay Concrete. Materials 2016, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Hanjitsuwan, S.; Hunpratub, S.; Thongbai, P.; Maensiri, S.; Sata, V.; Chindaprasirt, P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014, 45, 9–14. [Google Scholar] [CrossRef]
- Karakoç, M.B.; Türkmen, İ.; Maraş, M.M.; Kantarci, F.; Demirboğa, R.; Toprak, M.U. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr. Build. Mater. 2014, 72, 283–292. [Google Scholar] [CrossRef]
- Glosser, D.; Suraneni, P.; Isgor, O.B.; Weiss, W.J. Estimating reaction kinetics of cementitious pastes containing fly ash. Cem. Concr. Compos. 2020, 112, 103655. [Google Scholar] [CrossRef]
- Ma, S.; Qian, Y.; Kawashima, S. Experimental and modeling study on the non-linear structural build-up of fresh cement pastes incorporating viscosity modifying admixtures. Cem. Concr. Res. 2018, 108, 1–9. [Google Scholar] [CrossRef]
- Nachbaur, L.; Mutin, J.C.; Nonat, A.; Choplin, L. Dynamic mode rheology of cement and tricalcium silicate pastes from mixing to setting. Cem. Concr. Res. 2001, 31, 183–192. [Google Scholar] [CrossRef]
- Roussel, N.; Ovarlez, G.; Garrault, S.; Brumaud, C. The origins of thixotropy of fresh cement pastes. Cem. Concr. Res. 2012, 42, 148–157. [Google Scholar] [CrossRef]
- Mikanovic, N.; Jolicoeur, C. Influence of superplasticizers on the rheology and stability of limestone and cement pastes. Cem. Concr. Res. 2008, 38, 907–919. [Google Scholar] [CrossRef]
- Qian, Y.; Ma, S.; Kawashima, S.; de Schutter, G. Rheological characterization of the viscoelastic solid-like properties of fresh cement pastes with nanoclay addition. Theor. Appl. Fract. Mech. 2019, 103, 102262. [Google Scholar] [CrossRef]
- Onisei, S.; Lesage, K.; Blanpain, B.; Pontikes, Y. Early Age Microstructural Transformations of an Inorganic Polymer Made of Fayalite Slag. J. Am. Ceram. Soc. 2015, 98, 2269–2277. [Google Scholar] [CrossRef]
- Siddique, S.; Jang, J.G. Effect of CFBC ash as partial replacement of PCC ash in alkali-activated material. Constr. Build. Mater. 2020, 244, 118383. [Google Scholar] [CrossRef]
- Rovnaník, P.; Rovnaníková, P.; Vyšvařil, M.; Grzeszczyk, S.; Janowska-Renkas, E. Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer. Constr. Build. Mater. 2018, 188, 924–933. [Google Scholar] [CrossRef]
- Nicholas, M.K.D.; Waters, M.G.J.; Holford, K.M.; Adusei, G. Analysis of rheological properties of bone cements. J. Mater. Sci. Mater. Med. 2007, 18, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
Oxide Composition | Fly Ash (wt.%) | Slag (wt.%) |
---|---|---|
SiO2 | 58.88 | 28.47 |
CaO | 6.32 | 39.71 |
Al2O3 | 24.50 | 17.53 |
Fe2O3 | 6.88 | 0.91 |
SO3 | 0.74 | 1.54 |
MgO | 1.64 | 11.12 |
Na2O | 0.50 | 0.14 |
Mix | Yield Stress (Pa) | Plastic Viscosity (Pa.s) |
---|---|---|
FA-10M | 16.05 | 6.15 |
70FA30S-10M | 18.23 | 7.43 |
70S30FA-10M | 25.87 | 11.76 |
S-10M * | - | - |
FA-8M | 4.50 | 1.5 |
70FA30S-8M | 6.54 | 2.83 |
70S30FA-8M | 10.50 | 9.53 |
S-8M * | - | - |
FA-6M | 4.37 | 1.29 |
70FA30S-6M | 6.19 | 1.98 |
70S30FA-6M | 16.05 | 6.15 |
S-6M | 20.82 | 9.35 |
FA-4M | 4.35 | 2.06 |
70FA30S-4M | 5.43 | 2.08 |
70S30FA-4M | 6.13 | 5.5 |
S-4M | 16.55 | 8.70 |
Mix | Shear Strain (%) | Shear Stress (Pa) | Storage Modulus (Pa) |
---|---|---|---|
FA-10M | 0.01 | 0.015 | 74.50 |
70FA30S-10M | 0.01 | 0.007 | 33.33 |
70S30FA-10M | 0.01 | 0.007 | 29.90 |
S-10M | 0.01 | 0.007 | 32.46 |
FA-8M | 0.01 | 0.007 | 37.49 |
70FA30S-8M | 0.01 | 0.006 | 42.87 |
70S30FA-8M | 0.01 | 0.008 | 48.11 |
S-8M | 0.01 | 0.003 | 15.59 |
FA-6M | 0.01 | 0.003 | 17.38 |
70FA30S-6M | 0.01 | 0.004 | 22.87 |
70S30FA-6M | 0.01 | 0.006 | 34.68 |
S-6M | 0.01 | 0.003 | 26.72 |
FA-4M | 0.01 | 0.015 | 143.30 |
70FA30S-4M | 0.01 | 0.014 | 128.30 |
70S30FA-4M | 0.01 | 0.004 | 35.34 |
S-4M | 0.01 | 0.006 | 46.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddique, S.; Gupta, V.; Chaudhary, S.; Park, S.; Jang, J.-G. Influence of the Precursor, Molarity and Temperature on the Rheology and Structural Buildup of Alkali-Activated Materials. Materials 2021, 14, 3590. https://doi.org/10.3390/ma14133590
Siddique S, Gupta V, Chaudhary S, Park S, Jang J-G. Influence of the Precursor, Molarity and Temperature on the Rheology and Structural Buildup of Alkali-Activated Materials. Materials. 2021; 14(13):3590. https://doi.org/10.3390/ma14133590
Chicago/Turabian StyleSiddique, Salman, Vivek Gupta, Sandeep Chaudhary, Solmoi Park, and Jeong-Gook Jang. 2021. "Influence of the Precursor, Molarity and Temperature on the Rheology and Structural Buildup of Alkali-Activated Materials" Materials 14, no. 13: 3590. https://doi.org/10.3390/ma14133590
APA StyleSiddique, S., Gupta, V., Chaudhary, S., Park, S., & Jang, J. -G. (2021). Influence of the Precursor, Molarity and Temperature on the Rheology and Structural Buildup of Alkali-Activated Materials. Materials, 14(13), 3590. https://doi.org/10.3390/ma14133590